JDK1.8 HashMap 源码分析
一、HashMap概述:
HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化,采用数组+链表+红黑树实现,当链表长度超过阈值(8)时,将链表转换为红黑树,这样大大减少了查找时间。
二、HashMap数据结构:
说明:上图很形象的展示了HashMap的数据结构(数组+链表+红黑树),桶中的结构可能是链表,也可能是红黑树,红黑树的引入是为了提高效率。
三、HashMap源码分析:
3.1类的继承关系
public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable
可以看到HashMap继承自父类(AbstractMap),实现了Map、Cloneable、Serializable接口。其中,Map接口定义了一组通用的操作;Cloneable接口则表示可以进行拷贝,在HashMap中,实现的是浅层次拷贝,即对拷贝对象的改变会影响被拷贝的对象;Serializable接口表示HashMap实现了序列化,即可以将HashMap对象保存至本地,之后可以恢复状态。
3.2 类的属性
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶(bucket)上的结点数大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶(bucket)上的结点数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 桶中结构转化为红黑树对应的table的最小大小
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集,用于迭代元素
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
3.3 Node链表的实现
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
可以看到,node中包含一个next变量,这个就是链表的关键点,hash结果相同的元素就是通过这个next进行关联的。
3.4 TreeNode红黑树的实现
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}......
}
红黑树比链表多了四个变量,parent父节点、left左节点、right右节点、prev上一个同级节点,红黑树内容较多,有兴趣的可以自行百度,不在赘述。
3.5 构造函数
(1) HashMap(int, float)型构造函数
public HashMap(int initialCapacity, float loadFactor) {
// 初始容量不能小于0,否则报错
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// 初始容量不能大于最大值,否则为最大值
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充因子不能小于或等于0,不能为非数字
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 初始化填充因子
this.loadFactor = loadFactor;
// 初始化threshold大小
this.threshold = tableSizeFor(initialCapacity);
}
说明:tableSizeFor(initialCapacity)返回大于initialCapacity的最小的二次幂数值。
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
这里又涉及到一个算法,通过给定的大小cap,计算大于等于cap的最小的2的幂数。连续5次右移运算乍一看没有什么意思,但仔细一想2进制都是0和1啊,这就有问题了,第一次右移一位,就表示但凡是1的位置右边的一位都变成了1,第二次右移两位,上次已经把有1的位置都变成连续两个1了,是不是感觉很神奇,如此下来5次运算正好将int的32位都转了个遍,以最高的一个1的位置为基准将后面所有位数都变为1,然后在进行n+1,不就变成了2的幂数。这里还有一点要注意的是第一行的cap-1,这是因为如果cap本身就是2的幂数,会出现结果是cap的2倍的情况,会浪费空间。
(2) HashMap(int)型构造函数
public HashMap(int initialCapacity) {
// 调用HashMap(int, float)型构造函数
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
(3)HashMap()型构造函数。
public HashMap() {
// 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
(4)HashMap(Map<? extends K>)型构造函数。
public HashMap(Map<? extends K, ? extends V> m) {
// 初始化填充因子
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 将m中的所有元素添加至HashMap中
putMapEntries(m, false);
}
说明:putMapEntries(Map<? extends K, ? extends V> m, boolean evict)函数将m的所有元素存入本HashMap实例中。
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
int s = m.size();
if (s > 0) {
// 判断table是否已经初始化
if (table == null) { // pre-size
// 未初始化,s为m的实际元素个数
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
// 计算得到的t大于阈值,则初始化阈值
if (t > threshold)
threshold = tableSizeFor(t);
}
// 已初始化,并且m元素个数大于阈值,进行扩容处理
else if (s > threshold)
resize();
// 将m中的所有元素添加至HashMap中
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
putVal(hash(key), key, value, false, evict);
}
}
}
3.6 put实现
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// table未初始化或者长度为0,进行扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
// 桶中已经存在元素
else {
Node<K,V> e; K k;
// 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
// 将第一个元素赋值给e,用e来记录
e = p;
// hash值不相等,即key不相等;为红黑树结点
else if (p instanceof TreeNode)
// 放入树中
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 为链表结点
else {
// 在链表最末插入结点
for (int binCount = 0; ; ++binCount) {
// 到达链表的尾部
if ((e = p.next) == null) {
// 在尾部插入新结点
p.next = newNode(hash, key, value, null);
// 结点数量达到阈值,转化为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
// 跳出循环
break;
}
// 判断链表中结点的key值与插入的元素的key值是否相等
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 相等,跳出循环
break;
// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
p = e;
}
}
// 表示在桶中找到key值、hash值与插入元素相等的结点
if (e != null) {
// 记录e的value
V oldValue = e.value;
// onlyIfAbsent为false或者旧值为null
if (!onlyIfAbsent || oldValue == null)
//用新值替换旧值
e.value = value;
// 访问后回调
afterNodeAccess(e);
// 返回旧值
return oldValue;
}
}
// 结构性修改
++modCount;
// 实际大小大于阈值则扩容
if (++size > threshold)
resize();
// 插入后回调
afterNodeInsertion(evict);
return null;
}
final void treeifyBin(Node<K,V>[] tab, int hash) { //将链表转换为红黑树
int n, index; Node<K,V> e;
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) //如果map的容量小于64(默认值),会调用resize扩容,不会转换为红黑树
resize();
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null); //Node转换为TreeNode
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab); //调用TreeNode的树排序方法
}
}
这里重点说两点:
-
索引的计算:
在计算索引时,这个值必须在[0,length]这个左闭右开的区间中,基于这个条件,比如默认的table长度为16,代入公式 (n 1) & hash,结果必然是存在于[0,length]区间范围内。这里还有个小技巧,在容量一定是2^n的情况下,h & (length 1) == h % length,这里之所以使用位运算,我想也是因为位运算直接由计算机处理,效率要高过%运算。 -
转化红黑树:
在put方法中,逻辑是链表长度大于(TREEIFY_THRESHOLD -1)时,就转化为红黑树, 实际情况这只是初步判断,在转化的方法treeifyBin()方法中会进行二次校验,tab.length<MIN_TREEIFY_CAPACITY 64(默认值)时,会调用resize扩容,不会转换为红黑树。
3.7 HashMap中使用的hash算法
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
这个hash先将key右移了16位,然后与key进行异或。由于 int 只有 32 位,无符号右移 16 位相当于把高位的一半移到低位:
举个栗子:
这样可以避免只靠低位数据来计算哈希时导致的冲突,计算结果由高低位结合决定,可以避免哈希值分布不均匀。而且,采用位运算效率更高。
这里还涉及到put方法中的另一次&操作,
tab[i = (n - 1) & hash]
tab既是table,n是map集合的容量大小,hash是上面方法的返回值。因为通常声明map集合时不会指定大小,或者初始化的时候就创建一个容量很大的map对象,所以这个通过容量大小与key值进行hash的算法在开始的时候只会对低位进行计算,虽然容量的2进制高位一开始都是0,但是key的2进制高位通常是有值的,因此先在hash方法中将key的hashCode右移16位在与自身异或,使得高位也可以参与hash,更大程度上减少了碰撞率。
3.8 resize实现
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length; // 获取原HashMap数组的长度。
int oldThr = threshold; // 扩容临界值
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩充了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 没超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 遍历桶,然后对桶中的每个元素进行重新hash
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null; // 原table地址释放
// 单节点处理
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e; // 重新hash放入新table中
// 红黑树处理
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
// 长链表处理
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 新表是旧表的两倍容量,以下把单链表拆分为高位链表、低位链表
if ((e.hash & oldCap) == 0) { // 低位链表,注意与的对象是oldCap,而不是 oldCap-1
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else { // 高位链表
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 低位链表保持原索引放入新table中
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 高位链表放入新table中,索引=原索引+oldCap
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
从resize() 的实现中可以看出,在扩容时,针对table,如果桶的位置是单节点链表,那么index =(hash & (newTab.length - 1)),直接放入新表。红黑树另外处理。若是多节点链表,会产生高低和低位链表,即:hash & length=0为低位链表、hash & length=length为高位链表。低位链表保持原索引放入新table中,高位链表index=oldTab.index + oldTab.length = hash & (newTab.length-1)。
为什么要分高低位链表?,试想若是全部都使用index =(hash & (newTab.length - 1))计算,此时因为是基于下标存储,从而导致在index冲突的情况下,多元素链表的追加出现额外的时间(寻址等)或空间(辅助参数、结构等)上的开销。分高低位链表,相比先保存好数据再寻找追加效率更好,也是极好的优化技巧。
3.9 get实现
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) {
// 直接命中
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 未命中
if ((e = first.next) != null) {
// 在树中查找
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 在链表中查找
do {
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
4.0 remove实现
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 && (p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
// 直接命中
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
// 红黑树中查找
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
// 链表中查找
do {
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
// 命中后删除
if (node != null && (!matchValue || (v = node.value) == value || (value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next; // 链表首元素删除
else
p.next = node.next; //多元素链表节点删除
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
4.1 containsKey实现
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
4.2 containsValue实现
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
// table遍历
for (int i = 0; i < tab.length; ++i) {
// 多元素链表遍历
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value || (value != null && value.equals(v)))
return true;
}
}
}
return false;
}
四、总结:
(1) 为什么需要负载因子?
加载因子存在的原因,还是因为要减缓哈希冲突,例如:默认初始桶为16,或等到满16个元素才扩容,某些桶里可能就会有多个元素了。所以加载因子默认为0.75,也就是说大小为16的HashMap,扩容临界值threshold=0.75*16=12,到了第13个元素,就会扩容成32。
(2) 加载因子减小?
在构造函数里,设定小一点的加载因子,比如0.5,甚至0.25。
若是一个长期存在的Map,并且key不固定,那可以适当加大初始大小,同时减少加载因子,降低冲突的机率,也能减少寻址的时间。用空间来换时间,这时也是值得的。
(3) 初始化时是否定义容量?
通过以上源码分析,每次扩容都需要重创建桶数组、链表、数据转换等,所以扩容成本还是挺高的,若初始化时能设置准确或预估出需要的容量,即使大一点,用空间来换时间,有时也是值得的。
(4) String型的Key设计优化?
如果无法保证无冲突而且能用==来对比,那就尽量搞短点,试想一个个字符的equals都是需要花时间的。顺序型的Key,如:k1、k2、k3...k50,这种key的hashCode是数字递增,冲突的可能性实在太小。
for(int i=0;i<100;i++){
System.out.println(key+".hashCode="+key.hashCode());
}
结果:
K0.hashCode = 2373
K1.hashCode = 2374
K2.hashCode = 2375
K3.hashCode = 2376
K4.hashCode = 2377
... ...