《机器学习(周志华)》笔记--绪论(2)--机器学习发展史与发展现状

五、机器学习发展史

1、机器学习发展阶段  

  (1)基础奠定的热烈时期: 20世纪50年代初到60年代中叶

  (2)停滞不前的冷静时期: 20世纪60年代中叶到70年代末

  (3)重拾希望的复兴时期: 20世纪70年代末到80年代中叶

  (4)现代机器学习的成型时期: 20世纪90年初到21世纪初

  (5)大放光芒的蓬勃发展时期: 21世纪初至今

2、机器学习发展史重要人物

                         

3、神经元结构

                                         

  要让机器像人一样学习,首先要了解大脑的神经元结构。

  生物神经元由胞体(Soma)、树突(Dendrites),突触(Synapse)和轴突(Axon)等构成。

  胞体是神经元的代谢中心,胞体一般生长有许多树状突起,称为树突,它是神经元的主要接收器。胞体还延伸出一条管状纤维组织,称为轴突。树突是神经元的生物信号输入端,与其它的神经元相连;轴突是神经元的信号输出端,连接到其它神经元的树突上。

  生物神经元有两种状态:兴奋和抑制,平时生物神经元都处于抑制状态,轴突无输入,当生物神经元的树突输入信号大到一定程度,超过某个阈值时,生物神经元有抑制状态转为兴奋状态,同时轴突向其它生物神经元发出信号。轴突的作用主要是传导信息,传导的方向是由轴突的起点传向末端。通常,轴突的末端分出许多末梢,它们同后一个生物神经元的树突构成一种称为突触的机构。其中,前一个神经元的轴突末梢称为突触的前膜,后一个生物神经元的树突称为突触的后膜;前膜和后膜两者之间的窄缝空间称为突触的间隙,前一个生物神经元的信息由其轴突传到末梢之后,通过突触对后面各个神经元产生影响。

4、机器学习巨匠及算法发展历程

  (1)唐纳德·赫布(1904-1985)是加拿大著名生理心理学家。Hebb于1949年基于神经心理学的学习机制开启机器学习的第一步,此后被称为Hebb学习规则。

                           

  hebb是一种无监督学习规则。Hebb的理论认为在同一时间被激发的神经元间的联系会被强化。比如,铃声响时一个神经元被激发,在同一时间食物的出现会激发附近的另一个神经元,那么这两个神经元间的联系就会强化,从而记住这两个事物之间存在着联系。相反,如果两个神经元总是不能同步激发,那么它们间的联系将会越来越弱。

  (2)1950年,阿兰·图灵创造了图灵测试来判定计算机是否智能。图灵测试认为,如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。

  (3)1952年,IBM 的 Arthur Samuel(被誉为“机器学习之父”)在《Some Studies in Machine Learning Using the Game of Checkers》的论文中,定义并解释了一个新词——机器学习(Machine Learning,ML)。将机器学习非正式定义为”在不直接针对问题进行编程的情况下,赋予计算机学习能力的一个研究领域”。他还设计了一款可以学习的西洋跳棋程序。它能通过观察棋子的走位来构建新的模型,并用其提高自己的下棋技巧。Samuel 和这个程序进行多场对弈后发现,随着时间的推移程序的棋艺变得越来越好。

  (4)1957年,罗森 布纳特(Rosenblatt)发明了感知机(或称感知器,Perceptron),是神经网络的雏形,同时也是支持向量机的基础,在当时引起了不小的轰动。感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分离超平面。

                                                       

  (5)1960年,Widrow(维德罗)发明了Delta学习规则,它是一种简单的有监督学习算法,即如今的最小二乘问题,该算法根据神经元的实际输出与期望输出差别来调整连接权。该算法被应用到感知机中,并且得到了一个极好的线性分类器。

                                                                      

                                                                   

  (6)1969年,马文·明斯基(Minskey)将感知机推到最高顶峰。他提出了著名的XOR问题感知机数据线性不可分的情形,论证了感知器在类似XOR问题的线性不可分数据的无力,以至于其后十年被称为“冷静时期”,给感知机画上了一个逗号,以洪荒之力将如火如荼将的ML暂时封印了起来,Rosenblatt在这之后两年郁郁而终与此也不无关系。

                                                        

  (7)1970年,Seppo Linnainmaa(林纳因马)首次完整地叙述了自动链式求导方法(Automatic Differentiation,AD),是著名的反向传播算法(Back Propagation,BP)的雏形,但在当时并没有引起重视。

                                                          

   (8)1974年,Werbos(伟博斯)首次提出把BP算法的思想应用到神经网络,也就是多层感知机(Multilayer Perception,MLP),MLP或者称为人工神经网络(Artificial Neural Network,ANN),是一个带有单隐层的神经网络。

                                                                       

  事实上,这个时期整个AI领域都遭遇了瓶颈。当时的计算机有限的内存和处理速度不足以解决任何实际的AI问题。要求程序对这个世界具有儿童水平的认识,研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。

  感知机也成为单个神经元结构,神经元也成为单层感知机。

  (9)1980年,在美国的卡内基梅隆大学(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。

  (10)1985-1986年,Rumelhart,Hinton等许多神经网络学者成功实现了实用的BP算法来训练神经网络,并在很长一段时间内BP都作为神经网络训练的专用算法。

                                        

   (11)1986年,昆兰提出了另一个同样著名的ML算法:决策树算法(ID3),决策树作为一个预测模型,代表的是对象属性与对象值之间的一种映射关系,而且紧随其后涌现出了很多类似或者改进算法,如ID4,回归树,CART等。

  例:银行根据客户的房产情况,婚姻状况以及收入状况来评估客户偿还贷款的能力。

                                 

   (12)1995年,Yan LeCun提出了卷积神经网络(CNN),受生物视觉模型的启发,通常有至少两个非线性可训练的卷积层,两个非线性的固定卷积层,模拟视觉皮层中的V1和V2中的Simple cell和Complex cell,在手写字识别等小规模问题上,取得了当时世界最好结果,但是在大规模问题上表现不佳。(V1区负责边缘检测,V2区负责形状检测。局部连接,权值共享)

                                    

  (13)1995年,Vapnik和Cortes(瓦普尼克和科尔特斯)欲找到具有“最大间隔”的决策边界,提出了强大的支持向量机(SVM),主要思想是用一个分类超平面将样本分开从而达到分类效果,具有很强的理论论证和实验结果。

                                                               

   (14) 1997年,Freund和Schapire(弗洛恩德和夏皮雷)提出了另一个坚实的ML模型AdaBoost(集成学习),该算法最大的特点在于组合弱分类器形成强分类器,可以形象地表述为:“三个臭皮匠赛过诸葛亮”,分类效果比其它强分类器更好。

                                       

   (15)2001年,随着核方法的提出,SVM大占上风,它的主要思想就是通过将低维数据映射到高维,从而实现线性可分。

                                       

  (16) 2006年,Hinton(辛顿)他的学生在《Nature》上发表了一篇文章,提出的深度置信网络(Deep Belief Network,DBN)开启了深度学习新纪元。

            

  深度学习主要算法:   

     (1)CNN:卷积神经网络

   (2)RNN:循环神经网络

   (3)ResNet:残差网络

 六、应用现状

  机器学习中比较活跃的四大应用领域:

    (1)数据挖掘,发现数据之间的关系

    (2)计算机视觉,像人一样看懂世界

    (3)自然语言处理,像人一样看懂文字

    (4)机器人决策,像人一样具有决策能力

 

 

posted @ 2019-12-23 19:44  泰初  阅读(2940)  评论(0编辑  收藏  举报