hadoop 2.7.2 + zookeeper 高可用集群部署
一.环境说明
虚拟机:vmware 11
操作系统:Ubuntu 16.04
Hadoop版本:2.7.2
Zookeeper版本:3.4.9
二.节点部署说明
三.Hosts增加配置
sudo gedit /etc/hosts
wxzz-pc、wxzz-pc0、wxzz-pc1、wxzz-pc2均配置如下:
1 2 3 4 5 | 127.0.0.1 localhost 192.168.72.132 wxzz-pc 192.168.72.138 wxzz-pc0 192.168.72.135 wxzz-pc1 192.168.72.136 wxzz-pc2 |
四.zookeeper上配置
Zoo.cfg配置文件内容如下:
1 2 3 4 5 6 7 8 9 | tickTime=2000 initLimit=10 syncLimit=5 dataDir=/opt/zookeeper-3.4.9/tmp/dataDir dataLogDir=/opt/zookeeper-3.4.9/tmp/logs/ clientPort=2181 server.1=wxzz-pc:2182:2183 server.2=wxzz-pc0:2182:2183 server.3=wxzz-pc1:2182:2183 |
在/opt/zookeeper-3.4.9/tmp/dataDir下新建”myid”文件,wxzz-pc、wxzz-pc0、wxzz-pc1三台虚拟机中myid文件分别对应的内容为:1、2、3,也就是server.X=wxzz-pc:2182:2183,对应X的数值。
五.Hadoop配置
1.core-site.xml 配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <configuration> <property> <name>fs.defaultFS</name> <value>hdfs: //myhadoop:8020</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/opt/hadoop-2.7.2/tmp/hadoop-${user.name}</value> </property> <property> <name>ha.zookeeper.quorum</name> <value>wxzz-pc:2181,wxzz-pc0:2181,wxzz-pc1:2181</value> </property> </configuration> |
2. hdfs-site.xml 配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | <configuration> <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.block.size</name> <value>10485760</value> </property> <property> <name>hadoop.tmp.dir</name> <value>/opt/hadoop-2.7.2/tmp/hadoop-${user.name}</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>${hadoop.tmp.dir}/dfs/name</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>${hadoop.tmp.dir}/dfs/data</value> </property> <property> <name>dfs.permissions</name> <value> false </value> </property> <property> <name>dfs.permissions.enabled</name> <value> false </value> </property> <property> <name>dfs.webhdfs.enabled</name> <value> true </value> </property> <property> <name>dfs.nameservices</name> <value>myhadoop</value> </property> <property> <name>dfs.ha.namenodes.myhadoop</name> <value>nn1,nn2</value> </property> <property> <name>dfs.namenode.rpc-address.myhadoop.nn1</name> <value>wxzz-pc:8020</value> </property> <property> <name>dfs.namenode.http-address.myhadoop.nn1</name> <value>wxzz-pc:50070</value> </property> <property> <name>dfs.namenode.rpc-address.myhadoop.nn2</name> <value>wxzz-pc0:8020</value> </property> <property> <name>dfs.namenode.http-address.myhadoop.nn2</name> <value>wxzz-pc0:50070</value> </property> <property> <name>dfs.namenode.servicerpc-address.myhadoop.nn1</name> <value>wxzz-pc:53310</value> </property> <property> <name>dfs.namenode.servicerpc-address.cluster1.nn2</name> <value>wxzz-pc0:53310</value> </property> <property> <name>dfs.ha.automatic-failover.enabled.cluster1</name> <value> true </value> </property> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal: //wxzz-pc:8485;wxzz-pc0:8485;wxzz-pc1:8485/myhadoop</value> </property> <property> <name>dfs.client.failover.proxy.provider.myhadoop</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <property> <name>dfs.journalnode.edits.dir</name> <value>/opt/hadoop-2.7.2/journal</value> </property> <property> <name>dfs.ha.fencing.methods</name> <value>sshfence</value> </property> <property> <name>dfs.ha.fencing.ssh. private -key-files</name> <value>/opt/hadoop-2.7.2/.ssh/id_rsa</value> </property> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>1000</value> </property> <property> <name>dfs.namenode.handler.count</name> <value>10</value> </property> <property> <name>dfs.ha.automatic-failover.enabled.myhadoop</name> <value> true </value> </property> </configuration> |
3. mapred-site.xml 配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> <property> <name>mapreduce.jobhistory.address</name> <value>0.0.0.0:10020</value> </property> <property> <name>mapreduce.jobhistory.webapp.address</name> <value>0.0.0.0:19888</value> </property> </configuration> |
4.yarn-site.xml 配置
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | <configuration> <property> <name>yarn.resourcemanager.ha.enabled</name> <value> true </value> </property> <property> <name>yarn.resourcemanager.cluster-id</name> <value>rm-id</value> </property> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>wxzz-pc</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>wxzz-pc0</value> </property> <property> <name>yarn.resourcemanager.zk-address</name> <value>wxzz-pc:2181,wxzz-pc0:2181,wxzz-pc1:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration> |
六.服务启动
1.在各个Journal Node节点上,输入以下命令启动Journal Node
sbin/hadoop-daemon.sh start journalnode
2.在[nn1]上,进行格式化,并启动
bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode
3.在[nn2]上,同步[nn1]的元数据信息,并启动
bin/hdfs namenode -bootstrapStandby
sbin/hadoop-daemon.sh start namenode
经过以上3步,[nn1]和[nn2]均处在standby状态
4.[nn1]节点上,将其转换为active状态
bin/hdfs haadmin –transitionToActive --forcemanual nn1
5.在[nn1]上,启动所有datanode
sbin/hadoop-daemons.sh start datanode
6.在[nn1]上,启动yarn
sbin/start-yarn.sh
如果要关闭集群,在[nn1]上输入sbin/stop-all.sh即可。以后每次启动的时候,需要按照上面的步骤启动,不过不需要执行2 的格式化操作。
七.运行效果
管理界面:
命令行效果:
2.[开源]C#跨平台物联网通讯框架ServerSuperIO(SSIO)介绍
2.应用SuperIO(SIO)和开源跨平台物联网框架ServerSuperIO(SSIO)构建系统的整体方案
3.C#工业物联网和集成系统解决方案的技术路线(数据源、数据采集、数据上传与接收、ActiveMQ、Mongodb、WebApi、手机App)
5.ServerSuperIO开源地址:https://github.com/wxzz/ServerSuperIO
物联网&集成技术(.NET) QQ群:54256083
· 没有源码,如何修改代码逻辑?
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· DeepSeek “源神”启动!「GitHub 热点速览」
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
· DeepSeek R1 简明指南:架构、训练、本地部署及硬件要求
· NetPad:一个.NET开源、跨平台的C#编辑器