第四次作业
1.用图与自己的话,简要描述Hadoop起源与发展阶段。
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop实现了一个分布式文件系统( Distributed File System),其中一个组件是HDFS(Hadoop Distributed File System)。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。
Hadoop起源于Apache Nutch项目,始于2002年,是Apache Lucene的子项目之一 。2004年,Google在“操作系统设计与实现”(Operating System Design and Implementation,OSDI)会议上公开发表了题为MapReduce:Simplified Data Processing on Large Clusters(Mapreduce:简化大规模集群上的数据处理)的论文之后,受到启发的Doug Cutting等人开始尝试实现MapReduce计算框架,并将它与NDFS(Nutch Distributed File System)结合,用以支持Nutch引擎的主要算法。由于NDFS和MapReduce在Nutch引擎中有着良好的应用,所以它们于2006年2月被分离出来,成为一套完整而独立的软件,并被命名为Hadoop。到了2008年年初,hadoop已成为Apache的顶级项目,包含众多子项目,被应用到包括Yahoo在内的很多互联网公司。
2.用图与自己的话,简要描述名称节点、第二名称节点、数据节点的主要功能及相互关系。
名称节点最主要功能:名称节点记录了每个文件中各个块所在的数据节点的位置信息
在HDFS中,名称节点(NameNode)负责管理分布式文件系统的命名空间(Namespace),保存了两个核心的数据结构,即FsImage和EditLog
FsImage用于维护文件系统树以及文件树中所有的文件和文件夹的元数据
操作日志文件EditLog中记录了所有针对文件的创建、删除、重命名等操作
第二名称节点:是HDFS架构中的一个组成部分,它是用来保存名称节点中对HDFS 元数据信息的备份,并减少名称节点重启的时间。
SecondaryNameNode一般是单独运行在一台机器上
SecondaryNameNode让EditLog变小的工作流程:
(1)SecondaryNameNode会定期和NameNode通信,请求其停止使用EditLog文件,暂时将新的写操作写到一个新的文件edit.new上来,这个操作是瞬间完成,上层写日志的函数完全感觉不到差别;
(2)SecondaryNameNode通过HTTP GET方式从NameNode上获取到FsImage和EditLog文件,并下载到本地的相应目录下;
(3)SecondaryNameNode将下载下来的FsImage载入到内存,然后一条一条地执行EditLog文件中的各项更新操作,使得内存中的FsImage保持最新;这个过程就是EditLog和FsImage文件合并;
(4)SecondaryNameNode执行完(3)操作之后,会通过post方式将新的FsImage文件发送到NameNode节点上
(5)NameNode将从SecondaryNameNode接收到的新的FsImage替换旧的FsImage文件,同时将edit.new替换EditLog文件,通过这个过程EditLog就变小了
数据节点是分布式文件系统HDFS的工作节点,负责数据的存储和读取,会根据客户端或者是名称节点的调度来进行数据的存储和检索,并且向名称节点定期发送自己所存储的块的列表。
第二名称节点和名称节点的区别在于:
它不接收或记录HDFS的任何实时变化,而只是根据集群配置的时问间隔,不停地获取HDFS某一个时间点的命名空间镜像和镜像的编辑日志,合并得到一个新的命名空间镜像。该新镜像会上传到名字节点,替换原有的命名空间镜像,并清空上述日志。应该说,第二名字节点配合名字节点,为名字节点上的名字节点第一关系提供了一个简单的检查点(Checkpoint)机制,并避免出现编辑日志过大,导致名字节点启动时间过长的问题。
3.分别从以下这些方面,梳理清楚HDFS的结构与运行流程,以图的形式描述。
客户端与HDFS
客户端读
客户端写
数据结点与集群
数据结点与名称结点
名称结点与第二名称结点
数据结点与数据结点
数据冗余
数据存取策略
数据错误与恢复
HDFS结构图:
Secondary Namenode工作图解:
HDFS文件读流程:
HDFS文件写流程:
4.梳理HBase的结构与运行流程,以用图与自己的话进行简要描述,图中包括以下内容:
- Master主服务器的功能
- 为Region server分配region
- 负责Region server的负载均衡
- 发现失效的Region server并重新分配其上的region。
- HDFS上的垃圾文件回收。
- 处理schema更新请求。
- Region服务器的功能
table在行的方向上分隔为多个Region。Region是HBase中分布式存储和负载均衡的最小单元,即不同的region可以分别在不同的Region Server上,但同一个Region是不会拆分到多个server上。
Region按大小分隔,每个表一般是只有一个region。随着数据不断插入表,region不断增大,当region的某个列族达到一个阈值(默认256M)时就会分成两个新的region。
每个region由以下信息标识:
< 表名,startRowkey,创建时间>
由目录表(-ROOT-和.META.)记录该region的endRowkey - Zookeeper协同的功能
- Client客户端的请求流程
- 四者之间的相系关系
- 与HDFS的关联
5.理解并描述Hbase表与Region与HDFS的关系。
6.理解并描述Hbase的三级寻址。
7.假设.META.表的每行(一个映射条目)在内存中大约占用1KB,并且每个Region限制为2GB,通过HBase的三级寻址方式,理论上Hbase的数据表最大有多大?