bellman-ford(贝尔曼-福特)算法
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科斯彻算法, (另一种著名的求最短路径的算法)不同的是,在Bellman-Ford算法中,路径的权值可以为负数。 设想从我们可以从图中找到一个环路(即从v出发,经过若干个点之后又回到v)且这个环路中所有路径的权值之和为负。那么通过这个环路,环路中任意两点的最 短路径就可以无穷小下去。如果不处理这个负环路,程序就会永远运行下去。 而Bellman-Ford算法具有分辨这种负环路的能力。
算法描述 设G为加权有向图 V是所有结点的集合 E是所有路径的集合 S表示源点 n表示V中所有结点的数目 weight(u,v)表示从结点u到结点v的路径的权值。 Distanz(v)表示从源点s出发到结点v的最短路径的距离,(或者说是从s到v所有的路径中权值的最小值)。Predecessor(v)表示节点 v的父结点
在Bellman-Ford算法结束之后,可以输出,G是不是包含一个负环路。如果G不包含负环路,那么Distanz就存储了从s出发到所有结点的距离。
Bellman-Ford算法的伪代码如下:
例:V={v1,v2,v3,v4} E={(v1,v2),(v1,v3),(v2,v4),(v4,v3)} weight(v1,v2)=-1 weight(v1,v3)=3 weight(v2,v4)=3 weight(v4,v3)=-1
运行如表: D:Distanz(v),P:Predecessor(v)
点 | v1 | v2 | v3 | v4 |
---|---|---|---|---|
D/P | D/P | D/P | D/P | |
初始化(01-03步) | 0/null | ∞/null | ∞/null | ∞/null |
04步循环第一次 | 0/null | -1/v1 | 3/v1 | ∞/null |
04步循环第二次 | 0/null | -1/v1 | 3/v1 | 2/v2 |
04步循环第三次 | 0/null | -1/v1 | 1/v4 | 2/v2 |