tailDir 启动:
bin/flume-ng agent --conf conf --conf-file job/taildirSource-kafka.conf --name a1 -Dflume.root.logger=INFO,console
flume#
taildirSource-kafka.conf
#taildir source http://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#kafka-channel #为各个组件命名 a1.sources = r1 a1.channels = c1 #声明source a1.sources.r1.type = TAILDIR a1.sources.r1.filegroups = f1 #监控的目录 /log/app.* a1.sources.r1.filegroups.f1 = /home/sea/Desktop/xx/log/.*log.* #开启断点续传,不配置 默认开启 a1.sources.r1.positionFile= /home/sea/Desktop/xx/history/taildir_position.json a1.sources.r1.fileHeader = true #kafka channel #channels a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel a1.channels.c1.kafka.bootstrap.servers = hadoop001:9092,hadoop004:9092,hadoop005:9092 a1.channels.c1.kafka.topic = topic_log a1.channels.c1.parseAsFlumeEvent = false # 配置生产者的ack为1 a1.channels.c1.kafka.producer.acks = 1 # 配置生产者的批大小为1000 a1.channels.c1.kafka.producer.batch.size = 1000 a1.channels.c1.kafka.producer.linger.ms = 5000 #绑定source和channel以及sink和channel的关系 a1.sources.r1.channels = c1
tail -f
1)配置flume(flume-kafka.conf) # define a1.sources = r1 a1.sinks = k1 a1.channels = c1 # source a1.sources.r1.type = exec a1.sources.r1.command = tail -F -c +0 /opt/module/datas/flume.log a1.sources.r1.shell = /bin/bash -c # sink a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092 a1.sinks.k1.kafka.topic = first a1.sinks.k1.kafka.flumeBatchSize = 20 a1.sinks.k1.kafka.producer.acks = 1 a1.sinks.k1.kafka.producer.linger.ms = 1 # channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # bind a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1 2) 启动kafkaIDEA消费者 3) 进入flume根目录下,启动flume $ bin/flume-ng agent -c conf/ -n a1 -f jobs/flume-kafka.conf 4) 向 /opt/module/datas/flume.log里追加数据,查看kafka消费者消费情况 $ echo hello > /opt/module/datas/flume.log
分类:
flume
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?
2018-12-20 cqrs案例
2018-12-20 Callable和Future 多线程