GMAC网卡相关介绍与分析

GMAC网卡相关介绍与分析

来源 https://www.cnblogs.com/forwards/p/17101438.html

环境描述

环境

UTP

这里指MDI连接RJ45接口,UTP对网线来讲为非屏蔽双绞线。

SDS

SERDES是英文SERializer(串行器)/DESerializer(解串器)的简称 ,SerDes的主要特点包括:

1) 在数据线中时钟内嵌,不需要传送时钟信号。
2) 通过加重/均衡技术可以实现高速长距离传输,如背板。
3) 使用了较少的芯片引脚.

SGMII和FIBER都属于SDS,UTP\SDS指PHY与RJ45或光口的连接方式。MII、RGMII等表示PHY与MAC之间的硬件连接方式。

MII

本节信息来源

MII

MII

MII共16根线,数据位宽4(tx rx各4根信号线),TX_CLK RX_CLK均是PHY提供的。

TX_ER(Transmit Error): 发送数据错误提示信号,同步于TX_CLK,高电平有效,表示TX_ER有效期内传输的数据无效。对于10Mbps速率下,TX_ER不起作用;
    TX_EN(Transmit Enable): 发送使能信号,只有在TX_EN有效期内传的数据才有效;
    TX_CLK:发送参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。注意,TX_CLK时钟的方向是从PHY侧指向MAC侧的,因此此时钟是由PHY提供的。
    TXD(Transmit Data)[3:0]:数据发送信号,共4根信号线;
    RX_ER(Receive Error): 接收数据错误提示信号,同步于RX_CLK,高电平有效,表示RX_ER有效期内传输的数据无效。对于10Mbps速率下,RX_ER不起作用;
    RX_DV(Reveive Data Valid): 接收数据有效信号,作用类型于发送通道的TX_EN;
    RXD(Receive Data)[3:0]:数据接收信号,共4根信号线;
    RX_CLK:接收数据参考时钟,100Mbps速率下,时钟频率为25MHz,10Mbps速率下,时钟频率为2.5MHz。RX_CLK也是由PHY侧提供的。
    CRS:Carrier Sense,载波侦测信号,不需要同步于参考时钟,只要有数据传输,CRS就有效,另外,CRS只有PHY在半双工模式下有效;
    COL:Collision Detectd,冲突检测信号,不需要同步于参考时钟,只有PHY在半双工模式下有效。
    MII接口一共有16根线。

RMII

RMII

RMII即 Reduced MII,是MII的简化板,共8根线,数据位宽2。

CLK_REF:是由外部时钟源提供的50MHz参考时钟,与MII接口不同,MII接口中的接收时钟和发送时钟是分开的,而且都是由PHY芯片提供给MAC芯片的。这里需要注意的是,由于数据接收时钟是由外部晶振提供而不是由载波信号提取的,所以在PHY层芯片内的数据接收部分需要设计一个FIFO,用来协调两个不同的时钟,在发送接收的数据时提供缓冲。PHY层芯片的发送部分则不需要FIFO,它直接将接收到的数据发送到MAC就可以了。

GMII

GMII

同MII,但数据位宽8位,共24根信号线,其中GTX_CLK由MAC侧提供,大多数GMII兼容MII。

RGMII

phy 如果工作在含有RGMII 接口的模式,按照业内惯例,tx clk delay 由MAC 来完成;rx clk delay 由phy 来完成。所以一般PHY芯片的rx clk delay默认是 2ns, tx clk delay默认是750ps。
来源https://blog.csdn.net/fangye945a/article/details/121109158

RGMII

RGMII即Reduced GMII,是GMII的简化版本,共14根信号线,位宽为4,该时钟上升沿下降沿均采集数据。

SGMII

SGMII

SGMII即Serial GMII,串行GMII,收发各一对差分信号线,时钟频率625MHz,在时钟信号的上升沿和下降沿均采样,参考时钟RX_CLK由PHY提供,是可选的,主要用于MAC侧没有时钟的情况,一般情况下,RX_CLK不使用。收发都可以从数据中恢复出时钟。大多数MAC芯片的SGMII接口都可以配置成SerDes接口(在物理上完全兼容,只需配置寄存器即可),直接外接光模块,而不需要PHY层芯片,此时时钟速率仍旧是625MHz。

GMAC网卡信息获取方法

获取GMAC网卡信息

 xqzhang@greatwall:~$ sudo find /sys/ -name "*stmmac*"
/sys/bus/platform/drivers/stmmaceth
/sys/bus/mdio_bus/devices/stmmac-0:04
/sys/bus/mdio_bus/drivers/Atheros 8035 ethernet/stmmac-0:04
/sys/devices/platform/FTGM0001:00/mdio_bus/stmmac-0
/sys/devices/platform/FTGM0001:00/mdio_bus/stmmac-0/stmmac-0:04
/sys/class/mdio_bus/stmmac-0
/sys/kernel/debug/stmmaceth
/sys/module/dwmac_generic/drivers/platform:stmmaceth
/sys/module/stmmac
/sys/module/stmmac/holders/stmmac_platform
/sys/module/stmmac_platform

由上述信息可知,phy驱动为Atheros 8035 ethernet,该设备为平台设备,设备目录为/sys/devices/platform/FTGM0001:00/

查看PHY工作接口模式

cat /sys/devices/platform/FTGM0001:00/mdio_bus/stmmac-0/stmmac-0:04/phy_interface
rgmii

获取PHY ID

cat /sys/devices/platform/FTGM0001\:00/mdio_bus/stmmac-0/stmmac-0\:04/phy_id
0x004dd072

MAC芯片

读写MAC寄存器的方法

devmem2: https://gitee.com/Lematin_SZ/ARM_Linux_Debug_Tools/blob/master/devmem2/devmem2.c

Usage:  devmem2 { address } [ type [ data ] ]
        address : memory address to act upon
        type    : access operation type : [b]yte, [h]alfword, [w]ord
        data    : data to be written

对于FT2000/4核,MAC芯片是包含在CPU核内的,因此根据FT-2000/4+软件编程手册.pdf手册可以拿到MAC芯片的物理地址,用户态直接映射该物理地址可直接进行读写。
此外该物理地址也可以从设备树 ACPI固件中读取。

FT-2000/4+软件编程手册.pdf

读MAC寄存器

MAC0地址寄存器

读mac地址0寄存器

xqzhang@greatwall:~$ ifconfig enaftgm1i0
enaftgm1i0 Link encap:以太网  硬件地址 00:07:3e:9a:79:d6  
          inet 地址:172.25.83.26  广播:172.25.87.255  掩码:255.255.248.0
xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x40))  h
[sudo] xqzhang 的密码:
/dev/mem opened.
Memory mapped at address 0x7fabbb3000.
Value at address 0x2820C040 (0x7fabbb3040): 0xD679
xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x44))  h                                                          
/dev/mem opened.
Memory mapped at address 0x7f974b8000.
Value at address 0x2820C044 (0x7f974b8044): 0x700
xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x46))  h                                                          
/dev/mem opened.
Memory mapped at address 0x7fa3e7c000.
Value at address 0x2820C046 (0x7fa3e7c046): 0x9A3E
写MAC寄存器

写0x48寄存器

xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x48))  h 0x0001
/dev/mem opened.
Memory mapped at address 0x7f9e52e000.
Value at address 0x2820C048 (0x7f9e52e048): 0xFFFF
Written 0x1; readback 0x1
xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x48))  h 
/dev/mem opened.
Memory mapped at address 0x7facc88000.
Value at address 0x2820C048 (0x7facc88048): 0x1

MAC环回配置

环回寄存器在MAC控制寄存器0第12bit.

环回寄存器

读mac控制寄存器

xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x0))  w
[sudo] xqzhang 的密码:
/dev/mem opened.
Memory mapped at address 0x7f855a9000.
Value at address 0x2820C000 (0x7f855a9000): 0x614C8C
xqzhang@greatwall:~$ 0000 0000 1010 0001 0100 1100 1000 1100

配置bit12为1

xqzhang@greatwall:~$ sudo devmem2 $((0x0002820C000+0x0))  w 0x615c8c
/dev/mem opened.
Memory mapped at address 0x7f9b982000.
Value at address 0x2820C000 (0x7f9b982000): 0x614C8C
Written 0x615C8C; readback 0x615C8C

arp配置不存在的ip MAC地址为本机MAC,注意该mac地址必须与mac芯片的mac一致

sudo arp -s 172.25.82.241 00:07:3e:9a:79:d6

抓包并用ping验证

验证结果

PHY芯片

CPU读写phy方法(待更新)

mdio读写phy寄存器

phytoolhttps://github.com/wkz/phytool.git 该方式需要网卡驱动提供支持

phytool read  IFACE/ADDR/REG
phytool write IFACE/ADDR/REG <0-0xffff>
phytool print IFACE/ADDR[/REG]

Clause 22:

ADDR := <0-0x1f>
REG  := <0-0x1f>

Clause 45 (not supported by all MDIO drivers):

ADDR := PORT:DEV
PORT := <0-0x1f>
DEV  := <0-0x1f>
REG  := <0-0xffff>

其中ADDR的获取方式可参考获取GMAC网卡信息章节,或者使用如下命令获取ethtool enaftgm1i0 | grep PHYAD

xqzhang@greatwall:/sys/devices/platform/FTGM0001:00$ ethtool  enaftgm1i0  | grep PHYAD
        PHYAD: 4
读phy设备基础信息
xqzhang@greatwall:~/phytool$ sudo ./phytool enaftgm1i0/00:04/
ieee-phy: id:0x004dd072

   ieee-phy: reg:BMCR(0x00) val:0x1000
      flags:          -reset -loopback +aneg-enable -power-down -isolate -aneg-restart -collision-test
      speed:          10-half

   ieee-phy: reg:BMSR(0x01) val:0x796d
      capabilities:   -100-b4 +100-f +100-h +10-f +10-h -100-t2-f -100-t2-h
      flags:          +ext-status +aneg-complete -remote-fault +aneg-capable +link -jabber +ext-register

xqzhang@greatwall:~/phytool$ sudo ./phytool enaftgm1i0/0x4/
ieee-phy: id:0x004dd072

   ieee-phy: reg:BMCR(0x00) val:0x1000
      flags:          -reset -loopback +aneg-enable -power-down -isolate -aneg-restart -collision-test
      speed:          10-half

   ieee-phy: reg:BMSR(0x01) val:0x796d
      capabilities:   -100-b4 +100-f +100-h +10-f +10-h -100-t2-f -100-t2-h
      flags:          +ext-status +aneg-complete -remote-fault +aneg-capable +link -jabber +ext-register

ar8035_ds_(atheros)_mar2011.pdf  phy id reg

读PHY设备寄存器
xqzhang@greatwall:~/phytool$ sudo ./phytool read enaftgm1i0/0x04/0x02
ieee-phy: reg:0x02 val:0x004d
xqzhang@greatwall:~/phytool$ sudo ./phytool read enaftgm1i0/0x4/0x03
ieee-phy: reg:0x03 val:0xd072
写PHY设备寄存器
root@greatwall:/home/xqzhang/phytool# sudo ./phytool write  enaftgm1i0/0x04/0x04 0x1de1                                
root@greatwall:/home/xqzhang/phytool# sudo ./phytool read enaftgm1i0/0x04/0x04
ieee-phy: reg:0x04 val:0x1de1

Atheros 8035 强制千兆百兆十兆配置方式

phy控制寄存器1

phy控制寄存器2

首先需要bit12=0关闭自协商,然后根据bit6 bit13强制配置速率。
千兆配置sudo ./phytool write enaftgm1i0/0x4/0x0 0x0140
百兆配置sudo ./phytool write enaftgm1i0/0x4/0x0 0x2100
十兆配置sudo ./phytool write enaftgm1i0/0x4/0x0 0x0100
实际测试 强制千兆无法up,百兆千兆需要等很久才能ping通。

PHY环回配置

环回寄存器在phy控制寄存器0第14bit.

环回寄存器

10M 速率环回

sudo ./phytool write enaftgm1i0/0x4/0x0 0x4100

经测试在本节环境下,只有10M 环回才能正常UP

GMAC网卡驱动分析

查看Kconfig文件,发现该驱动支持Platform和多种SOC以及PCI等方式。

kylin@kylin-GW-001M1A-FTF:~/Workspace/xqzhang/ShangHai-GFSY-klinux/drivers/net/ethernet/stmicro/stmmac$ grep -nr support Kconfig 
21:     tristate "STMMAC Platform bus support"
26:       This selects the platform specific bus support for the stmmac driver.
45:     tristate "QCA IPQ806x DWMAC support"
52:       This selects the IPQ806x SoC glue layer support for the stmmac
58:     tristate "NXP LPC18xx/43xx DWMAC support"
66:     tristate "Amlogic Meson dwmac support"
72:       This selects the Amlogic Meson SoC glue layer support for
77:     tristate "Rockchip dwmac support"
84:       This selects the Rockchip RK3288 SoC glue layer support for
88:     tristate "SOCFPGA dwmac support"
95:       This selects the Altera SOCFPGA SoC glue layer support
100:    tristate "STi GMAC support"
107:      This selects STi SoC glue layer support for the stmmac
112:    tristate "Allwinner GMAC support"
118:      This selects Allwinner SoC glue layer support for the
124:    tristate "STMMAC PCI bus support"
130:      This PCI support is tested on XLINX XC2V3000 FF1152AMT0221

lsmod查看当前设备所加载的驱动模块

xqzhang@greatwall:~$ lsmod | grep stmmac
stmmac_platform         9705  1 dwmac_generic
stmmac                 72158  3 dwmac_generic,stmmac_platform

其中dwmac_generic属于驱动匹配入口,支持设备树、ACPI、Platform等匹配方式。
stmmac_platform则是提供设备树、ACPI、Platform等资源信息的获取方式,并提供了PM电源管理的ops。
stmmac为网卡驱动本体,负责probe配置、网卡open等。

stmmac_dvr_probe

在GMAC驱动probe过程中会先读取0x1058硬件功能寄存器,并将其复制给dma_cap,若mac芯片不支持PCS(TBI / SGMII / RTBI PHY 接口))则会遍历phy设备找到对应的phy id然后注册mdio bus.
当CONFIG_DEBUG_FS宏打开时,可通过cat /sys/kernel/debug/stmmaceth/eth0/dma_cap查看硬件功能寄存器中的内容。

stmmac_open

在GMAC的open函数中,如果不支持PCS(TBI / SGMII / RTBI PHY 接口)则先进行phy芯片的初始化工作,在phy初始化的过程中(stmmac_init_phy)如果设备树有定义phy_node(phy_node是通过device tree中的phy_handle构造的)则进行of_phy_connect连接,否则进行phy_connect连接。of_phy_connect和phy_connect差异在于前者已经找到的phy_device,后者需要先通过mdio bus找到phy_device。连接phy的实现主要在phy_connect_direct函数中,该函数共做了以下几步:

  1. phy_attach_direct(attach a network device to a given PHY device pointer)
  2. 赋值adjust_link = stmmac_adjust_link,该函数负责监控phy链路状态
  3. phy_start_machine启动PHY状态机跟踪
  4. 如果是中断模式,则启用中断
    连接过程重点在phy_attach_direct函数中,其会先判断是否匹配到具体的phy driver,若phy driver不存在则会调用通用genphy_driver进行probe和bind操作。之后会调用phy_init_hw进行phy config配置,配置完成后执行phy_resume启用phy设备。phy_init_hw函数中将对phy设备做soft_reset、fixup、config_init等操作,这些操作涉及一系列的phy寄存器操作。在stmmac_init_phy函数的最后会根据接口模式MII或RMII(GMII)设置不同的advertising带宽属性。

无论是否支持PCS,open函数中都要做的是alloc tx rx desc环形缓冲区、配置MAC芯片寄存器stmmac_hw_setup、创建1个stmmac_tx_timer定时器(用于定时清理环形缓冲区)、phy_start启动phy设备、request_irq注册相关中断。

stmmac_hw_setup函数中stmmac_init_dma_engine初始化dma引擎、set_umac_addr配置MAC addr、bus_setup总线配置(可选)、core_init MAC core的初始化、rx_ipc RX IPC Checksum offload启用、stmmac_set_mac启用MAC收发队列、stmmac_dma_operation_mode设置DMA模式、stmmac_mmc_setup设置mac管理计数器、stmmac_init_ptp初始化PTP硬件时钟驱动、start_tx start_rx 启用dma收发队列、rx_watchdog、ctrl_ane。

根据上述分析,在GMAC probe流程中主要对硬件功能寄存器进行读取,驱动根据具体的功能支持情况进行配置。GMAC open流程中phy_init_hw函数中包含了大量phy寄存器的配置,stmmac_hw_setup函数中包含了大量mac寄存器的配置。

stmmac_hw_setup配置解读

初始化DMA引擎

  • 读 总线模式寄存器 0x1000
  • 设置0x1000_bit0=1,复位MAC DMA控制器
  • 当0x1000_bit0 == 0时,复位完成
  • 配置0x1000_bit24 8xPBL , 0x1000_bit22-17 RPBL , 0x1000_bit8 PBL
  • 配置固定突发FB、混合突发MB、配置ATDS(告知dma描述符表为32字节还是16字节)
  • 配置AXI 总线模式寄存器 0x1028
  • 状态寄存器中断使能0x101c
    中断状态包含以下模式:
 /* DMA Normal interrupt */                                                       
 #define DMA_INTR_ENA_NIE        0x00010000      /* Normal Summary */             
 #define DMA_INTR_ENA_AIE        0x00008000      /* Abnormal Summary */           
 #define DMA_INTR_ENA_ERE        0x00004000      /* Early Receive */              
 #define DMA_INTR_ENA_FBE        0x00002000      /* Fatal Bus Error */            
 #define DMA_INTR_ENA_ETE        0x00000400      /* Early Transmit */             
 #define DMA_INTR_ENA_RWE        0x00000200      /* Receive Watchdog */           
 #define DMA_INTR_ENA_RSE        0x00000100      /* Receive Stopped */            
 #define DMA_INTR_ENA_RUE        0x00000080      /* Receive Buffer Unavailable */ 
 #define DMA_INTR_ENA_RIE        0x00000040      /* Receive Interrupt */          
 #define DMA_INTR_ENA_UNE        0x00000020      /* Tx Underflow */               
 #define DMA_INTR_ENA_OVE        0x00000010      /* Receive Overflow */           
 #define DMA_INTR_ENA_TJE        0x00000008      /* Transmit Jabber */            
 #define DMA_INTR_ENA_TUE        0x00000004      /* Transmit Buffer Unavail */    
 #define DMA_INTR_ENA_TSE        0x00000002      /* Transmit Stopped */           
 #define DMA_INTR_ENA_TIE        0x00000001      /* Transmit Interrupt */         
  • 配置0x1010发送描述符列表地址寄存器,0x100c接收描述符列表地址寄存器

PHY驱动分析

ar8035_probe

该函数仅从固件获取资源并做基本初始化工作,仅针对ft2000a4关闭了hibernate NLP脉冲电缆检测功能。

phy_init_hw配置解读

phy_init_hw函数中主要做了3步

  1. soft_reset,如果匹配到了phy driver则调用特定的soft_reset否则调用genphy_soft_reset做通用处理。
  2. scan_fixups,扫描并调用phy修复函数,该函数需要mac驱动主动注册相关服务后生效,该功能使用的频率很少,现有内核中仅有两个以太网驱动使用。
  3. config_init,以ar8035_config_init为例,该函数首先调用genphy_config_init,然后根据是否是GPIO地址模式以及PHY INTERFACE模式去配置不同的rx 、tx delay。
  • genphy_config_init中为读取两个base寄存器,分别是0x01基本模式状态寄存器、0x0f扩展状态寄存器,用于判断PHY设备的速率支持情况(advertising、advertising)
  • 在GPIO地址模式下,先关闭rx delay,再配置gtx clk为2.4ns,并使能tx delay。
  • 在非GPIO地址模式下,如果phy interface为 rgmii txid则,直接使能tx delay。

附:根据phy.h可知phy interface mode 有以下几种:

        case PHY_INTERFACE_MODE_NA:
                return "";
        case PHY_INTERFACE_MODE_MII:
                return "mii";
        case PHY_INTERFACE_MODE_GMII:
                return "gmii";
        case PHY_INTERFACE_MODE_SGMII:
                return "sgmii";
        case PHY_INTERFACE_MODE_TBI:
                return "tbi";
        case PHY_INTERFACE_MODE_REVMII:
                return "rev-mii";
        case PHY_INTERFACE_MODE_RMII:
                return "rmii";
        case PHY_INTERFACE_MODE_RGMII:
                return "rgmii";
        case PHY_INTERFACE_MODE_RGMII_ID:
                return "rgmii-id";
        case PHY_INTERFACE_MODE_RGMII_RXID:
                return "rgmii-rxid";
        case PHY_INTERFACE_MODE_RGMII_TXID:
                return "rgmii-txid";
        case PHY_INTERFACE_MODE_RTBI:
                return "rtbi";
        case PHY_INTERFACE_MODE_SMII:
                return "smii";
        case PHY_INTERFACE_MODE_XGMII:
                return "xgmii";
        case PHY_INTERFACE_MODE_MOCA:
                return "moca";
        case PHY_INTERFACE_MODE_QSGMII:
                return "qsgmii";
        default:
                return "unknown";

针对RGMII类型的接口,如果phy interface为PHY_INTERFACE_MODE_RGMII,则应该由MAC提供tx rx delay,PHY不需要提供,反之如果phy interface不是PHY_INTERFACE_MODE_RGMII,则应该禁用MAC时延,相关时延由PHY提供。

PHY标准寄存器解读

phy标准寄存器解读

ETHX日志级别设置

日志级别信息

 enum {                                                                           
         NETIF_MSG_DRV           = 0x0001,                                        
         NETIF_MSG_PROBE         = 0x0002,                                        
         NETIF_MSG_LINK          = 0x0004,                                        
         NETIF_MSG_TIMER         = 0x0008,                                        
         NETIF_MSG_IFDOWN        = 0x0010,                                        
         NETIF_MSG_IFUP          = 0x0020,                                        
         NETIF_MSG_RX_ERR        = 0x0040,                                        
         NETIF_MSG_TX_ERR        = 0x0080,                                        
         NETIF_MSG_TX_QUEUED     = 0x0100,                                        
         NETIF_MSG_INTR          = 0x0200,                                        
         NETIF_MSG_TX_DONE       = 0x0400,                                        
         NETIF_MSG_RX_STATUS     = 0x0800,                                        
         NETIF_MSG_PKTDATA       = 0x1000,                                        
         NETIF_MSG_HW            = 0x2000,                                        
         NETIF_MSG_WOL           = 0x4000,                                        
 };                                    
 默认的消息级别: 0x0063
 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |          
                                       NETIF_MSG_LINK | NETIF_MSG_IFUP |          
                                       NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);       

打印rx ring desc
sudo ethtool -s enaftgm1i0 msglvl   0x0800
关闭日志打印
sudo ethtool -s enaftgm1i0 msglvl   0x0000
恢复默认的日志级别
sudo ethtool -s enaftgm1i0 msglvl   0x0063

该日志信息可通过dmesg -w查看。

收发队列描述符查看

通过cat /sys/kernel/debug/stmmaceth/eth0/descriptors_status

以太网层图例

以太网图例

简单图解OSI七层网络模型

体系结构

LINUX 内核官方文档

https://www.kernel.org/doc/html/latest/networking/phy.html
https://www.kernel.org/doc/html/latest/networking/sfp-phylink.html
https://www.kernel.org/doc/html/latest/networking/index.html

 

=========== 

SGMII

来源 https://zhuanlan.zhihu.com/p/393030791

什么是SGMII?

先说什么是GMII/MII。 MII是ethernet协议里面MAC层和PHY层之间的接口标准。MII是4bits的数据位宽,支持10/100M的数据传输。GMII前面G表示Gigabit,代表支持1000M的传输速率。需要说明的是MII是GMII的子集,也即是说支持GMII标准的设备,同时支持10/100/1000M三种模式。

SGMII前面的S代表Serial,即串行的意思。前面说了MII的数据位宽是4bits,GMII是8bits,SGMII则是1bit。

需要澄清的是SGMII是否只支持1G速率?答案是:错误!同时支持三种速率。具体速率是通过自协商来决定的,如果某个厂商的设备只做了1种速率支持,其实是实现了协议的一个子集,在某种场景下也是可以工作,而不是说协议只规定了一种速率模式。

为什么需要用SGMII?

SGMII协议是CISCO公司提出来的,可以减少芯片间互联的管脚。传统的GMII前面说了是8bits数据线,此外还需要时钟,和一些控制线,双向加起来要20根线左右。而SGMII接口是1根数据线加1根时钟线,双向共4根。如果去掉时钟线(采用CDR),那么2根线就可以实现互联了。

SGMII接口如何与PHY芯片互联?

 

SGMII的时序与电气特性也是有规定的,时序上采用类似DDR的接口,电平采用LVDS标准。

协议里规定了输出信号需要提供一个半速率、90度相移的时钟信号。同时也允许接收端采用CDR恢复时钟的方式。

 

既然已经串行化了是不是不用接PHY芯片了?答案是否定的。因为常用ethernet介质为双绞线。而802.3协议里的物理层定义的信号为PAM5。而PCS输出的信号为NRZ信号。当然如果用sgmii实现两个芯片的mac层短距互联也是可以的,这就超出了802.3协议的定义了。

SGMII如何实施?

SGMII本质上并没有对以太网协议的分层做改动,还是MAC层,PCS层和PMA层。原来GMII模式下,MAC层一般做在SOC侧,PHY层包括PCS+PMA做在另一个单独的芯片上。而SGMII的实施是将PCS层也同时放在了原来的MAC侧。这样SOC芯片和PHY芯片各有一个PCS层。

对于SOC发送来说,数据包有MAC层过来,经过tx 的pcs,从SGMII接口发送出去。在PHY芯片上,有一个rx的pcs先将SGMII的信号解出GMII信号,然后再经过传统的PHY层处理发送到介质上。对于SOC接收来说,则反过来。

SGMII如何自协商?

SGMII的自协商从功能角度来说采用1G以太(802.3z)的自协商功能。即pcs和phy之间传递参数。但发送的内容和802.3z协议里定义的参数格式不同。

从上表可以看到SGMII的自协商参数内容。流程上是PHY将配置发给PCS,PCS发送确认信息。值得注意的是此处的自协商是指802.3中第37章节里定义的PCS自协商,是不包括链路信息的。

以上信息解读来自于Serial-GMII Specification version 1.8。

 

============ End

 

posted @ 2023-10-18 21:24  lsgxeva  阅读(1605)  评论(0编辑  收藏  举报