[BZOJ1299]巧克力棒(博弈论,线性基)

[BZOJ1299]巧克力棒

Description

TBL和X用巧克力棒玩游戏。每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度。TBL先手两人轮流,无法操作的人输。 他们以最佳策略一共进行了10轮(每次一盒)。你能预测胜负吗?

Input

输入数据共20行。 第2i-1行一个正整数Ni,表示第i轮巧克力棒的数目。 第2i行Ni个正整数Li,j,表示第i轮巧克力棒的长度。

Output

输出数据共10行。 每行输出“YES”或“NO”,表示TBL是否会赢。如果胜则输出"NO",否则输出"YES"

Sample Input

3
11 10 15
5
13 6 7 15 3
2
15 12
3
9 7 4
2
15 12
4
15 12 11 15
3
2 14 15
3
3 16 6
4
1 4 10 3
5
8 7 7 5 12

Sample Output

YES
NO
YES
YES
YES
NO
YES
YES
YES
NO

HINT

20%的分数,N<=5,L<=100。

40%的分数,N<=7。 50%的分数,L<=5,000。

100%的分数,N<=14,L<=1,000,000,000。

考虑我们要怎么赢,每次拿出火柴时让对手面对异或值为0的局面,并且让剩下的火柴中不存在异或值为0的局面,其实这就等价于火柴中存在异或值为0的集合。
所以我们可以把每堆火柴丢到线性基里面,判断这个值能否被异或出来即可。

#include<bits/stdc++.h>
#define lll long long
using namespace std;
lll read(){
	lll x=0,w=1;char ch=getchar();
	while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
	while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
	return x*w;
}
lll n,a[15],c[50],flag;
void insert(lll v){
	for(lll i=32;i>=0;i--){
		if(!(v>>i))continue;
		if(!c[i]){c[i]=v;break;}
		v^=c[i];if(!v){flag=1;break;}
	}
}
void work(){
	flag=0;memset(c,0,sizeof(c));
	n=read();for(lll i=1;i<=n;i++)a[i]=read(),insert(a[i]);
	if(flag)printf("NO\n");else printf("YES\n");
}
int main(){
	lll t=10;
	while(t--)work();
}
posted @ 2018-10-15 16:58  Frozen_Heart  阅读(326)  评论(0编辑  收藏  举报