Chapter 1: An Overview
Energy and power
Total energy & average power
E = ∫ t 2 t 1 | x ( t ) | 2 d t P = E t 2 − t 1 Continuous-time signal E = n 2 ∑ n = n 1 | x [ n ] | 2 P = E n 2 − n 1 + 1 Discrete-time signal E = ∫ t 1 t 2 | x ( t ) | 2 d t P = E t 2 − t 1 Continuous-time signal E = ∑ n = n 1 n 2 | x [ n ] | 2 P = E n 2 − n 1 + 1 Discrete-time signal
Infinite time:
E = lim T → ∞ ∫ T − T | x ( t ) | 2 d t = ∫ ∞ − ∞ | x ( t ) | 2 d t P = lim T → ∞ 1 2 T ∫ T − T | x ( t ) | 2 d t Continuous-time signal E = lim N → ∞ N ∑ n = − N | x [ n ] | 2 = ∞ ∑ n = − ∞ | x [ n ] | 2 P = lim N → ∞ 1 2 N + 1 N ∑ n = − N | x [ n ] | 2 Discrete-time signal E = lim T → ∞ ∫ − T T | x ( t ) | 2 d t = ∫ − ∞ ∞ | x ( t ) | 2 d t P = lim T → ∞ 1 2 T ∫ − T T | x ( t ) | 2 d t Continuous-time signal E = lim N → ∞ ∑ n = − N N | x [ n ] | 2 = ∑ n = − ∞ ∞ | x [ n ] | 2 P = lim N → ∞ 1 2 N + 1 ∑ n = − N N | x [ n ] | 2 Discrete-time signal
Infinite/Finite-energy/power signal.
Exponential and Sinusoidal Signals
x ( t ) = e j ω 0 t x ( t ) = e j ω 0 t 的基波周期 (fundamental frequency) T 0 = 2 π ω 0 T 0 = 2 π ω 0 , ω 0 ω 0 是基波频率。
对于离散信号 x [ n ] = e j ω 0 n x [ n ] = e j ω 0 n :
e j ( ω 0 + 2 π ) n = e j ω 0 n e j ( ω 0 + 2 π ) n = e j ω 0 n 是相同信号。
只考虑频率为 0 ≤ ω 0 < 2 π 0 ≤ ω 0 < 2 π or − π < ω 0 ≤ π − π < ω 0 ≤ π
0 ≤ ω 0 < 2 π 0 ≤ ω 0 < 2 π ,振荡速率 (oscillation rate) 先快后慢,ω 0 = π ω 0 = π 时最大,信号为 ( − 1 ) n ( − 1 ) n 。
周期性:需要满足 ω 0 2 π = m N ω 0 2 π = m N 为有理数,若 gcd ( m , N ) = 1 gcd ( m , N ) = 1 ,则 N = m 2 π ω 0 N = m 2 π ω 0 为该信号的基波周期,ω 0 m ω 0 m 为基波频率。
一组信号 ϕ k [ n ] = e j 2 π N k ⋅ n ϕ k [ n ] = e j 2 π N k ⋅ n 只有 N N 个不同的信号(离散傅里叶变换时用得到)。
The Unit Impulse and Unit Step Functions
δ ( t ) δ ( t ) 单位脉冲信号 Unit impulse,u ( t ) u ( t ) 单位阶跃信号 Unit step 。
δ [ n ] = u [ n ] − u [ n − 1 ] u [ n ] = n ∑ m = − ∞ δ [ m ] = ∞ ∑ k = 0 δ [ n − k ] Discrete-time signal δ ( t ) = d u ( t ) d t u ( t ) = ∫ t − ∞ δ ( τ ) d τ = ∫ ∞ 0 δ [ t − σ ] d σ Continuous-time signal δ [ n ] = u [ n ] − u [ n − 1 ] u [ n ] = ∑ m = − ∞ n δ [ m ] = ∑ k = 0 ∞ δ [ n − k ] Discrete-time signal δ ( t ) = d u ( t ) d t u ( t ) = ∫ − ∞ t δ ( τ ) d τ = ∫ 0 ∞ δ [ t − σ ] d σ Continuous-time signal
x [ n ] δ [ n − n 0 ] = x [ n 0 ] δ [ n − n 0 ] Discrete-time signal x ( t ) δ ( t − t 0 ) = x ( t 0 ) δ ( t − t 0 ) Continuous-time signal x [ n ] δ [ n − n 0 ] = x [ n 0 ] δ [ n − n 0 ] Discrete-time signal x ( t ) δ ( t − t 0 ) = x ( t 0 ) δ ( t − t 0 ) Continuous-time signal
Basic System Properties
System with and without memory 记忆性
System without memory: Output is dependent only on the current input.
输出的 y [ n ] y [ n ] 只与 x [ n ] x [ n ] 有关。
Invertibility and inverse system 可逆性
Invertible : Distinct inputs lead to distinct outputs.
对 y [ n ] → x [ n ] y [ n ] → x [ n ] 存在逆系统 (inverse system) y [ n ] → x [ n ] y [ n ] → x [ n ] 。
Causality 因果性
Causal: the output at any time depends only on the inputs at the
present time and in the past.
输出的 y [ n ] y [ n ] 只与 x [ k ] , k ≤ n x [ k ] , k ≤ n 有关。
Stability 稳定性
Formally: bounded input leads to bounded output.
有界输入 x [ n ] ∈ [ a , b ] x [ n ] ∈ [ a , b ] 产生有界输出 y [ n ] ∈ [ a ′ , b ′ ] y [ n ] ∈ [ a ′ , b ′ ] 。
Time Invariance 时不变性
Time invariant: a time shift in the input signal results in an identical time shift in the output signal.
对任意 x [ t ] x [ t ] 与 t 0 t 0 , x [ t ] → y [ t ] ⟹ x [ t − t 0 ] → y [ t − t 0 ] x [ t ] → y [ t ] ⟹ x [ t − t 0 ] → y [ t − t 0 ] 。
不能有时变增益与时间伸缩相关操作。
Linearity 线性性
Linearity: Superposition property (additivity and homogeneity)
对任意 x [ t ] x [ t ] 与 a , b ∈ C a , b ∈ C , x 1 [ t ] → y 1 [ t ] ∧ x 2 [ t ] → y 2 [ t ] ⟹ a x 1 [ t ] + b x 2 [ t ] → a y 1 [ t ] + b y 2 [ t ] x 1 [ t ] → y 1 [ t ] ∧ x 2 [ t ] → y 2 [ t ] ⟹ a x 1 [ t ] + b x 2 [ t ] → a y 1 [ t ] + b y 2 [ t ] 。
Chapter 2: Linear Time-Invariant Systems
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· AI 智能体引爆开源社区「GitHub 热点速览」
· 写一个简单的SQL生成工具
· Manus的开源复刻OpenManus初探