【CF1416C】XOR Inverse - 01-Trie
题目描述
You are given an array aa consisting of \(n\) non-negative integers. You have to choose a non-negative integer \(x\) and form a new array \(b\) of size \(n\) according to the following rule: for all \(i\) from \(1\) to \(n\) , \(b_i = a_i \oplus x\)(\(\oplus\) denotes the operation bitwise XOR).
An inversion in the \(b\) array is a pair of integers \(i\) and \(j\) such that \(1 \le i < j \le n\) and \(b_i > b_j\).
You should choose \(x\) in such a way that the number of inversions in \(b\) is minimized. If there are several options for \(x\) — output the smallest one.
题目大意
给定长度为 \(n\) 的数列 \(\{a_n\}\),请求出最小的整数 \(x\) 使 \(\{a_n\oplus x\}\) 的逆序对数最少
题解
可以发现若 \(x\) 的某一位上是 1,就相当于交换了那一位那层的 Trie 的所有左右子树
再考虑哪些位上要交换,可以发现 Trie 树叶子上,一个点在另一个点左边,那右边这个点一定小于左边的点
那可以将每一个数依次插入 Trie 上,Trie 上的结点这个子树叶子的结点的编号
可以发现叶子节点编号的逆序对就是原数组的逆序对,因为原数组若一个数后面有比它小的数,小的数会比它后加入并且插入 Trie 的叶子后在它的前面
因为两颗子树内部数的顺序是不影响两棵之间的逆序对个数的,所以就可以计算每一层所有子树反转或不反转的逆序对个数了
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn = 3e5 + 10;
const int N = 30;
vector<int> num[maxn*N];
int n,tot,ch[maxn*N][2];
long long cnt[N+1][2];
inline void insert(int x,int v) {
int u = 0;
for (int i = N;~i;i--) {
int bit = (x>>i)&1;
num[u].push_back(v);
if (!ch[u][bit]) ch[u][bit] = ++tot;
u = ch[u][bit];
}
num[u].push_back(v);
}
inline void solve(int u,int i) {
if (i < 0) return;
if (ch[u][0]) solve(ch[u][0],i-1);
if (ch[u][1]) solve(ch[u][1],i-1);
if (!ch[u][0] || !ch[u][1]) return;
long long res = 0;
for (size_t j = 0;j < num[ch[u][1]].size();j++)
res += num[ch[u][0]].end()-lower_bound(num[ch[u][0]].begin(),num[ch[u][0]].end(),num[ch[u][1]][j]);
cnt[i][0] += res;
cnt[i][1] += 1ll*num[ch[u][0]].size()*num[ch[u][1]].size()-res;
}
int main() {
scanf("%d",&n);
for (int i = 1,x;i <= n;i++) { scanf("%d",&x); insert(x,i); }
solve(0,N);
long long ans = 0;
int res = 0;
for (int i = 0;i <= N;i++)
if (cnt[i][0] <= cnt[i][1]) ans += cnt[i][0];
else { ans += cnt[i][1]; res |= 1<<i; }
printf("%lld %d",ans,res);
return 0;
}