【POJ 1741】Tree (树上点分治)
Tree
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v. Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k. Write a program that will count how many pairs which are valid for a given tree. Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros. Output
For each test case output the answer on a single line.
Sample Input 5 4 1 2 3 1 3 1 1 4 2 3 5 1 0 0 Sample Output 8 Source |
[Submit] [Go Back] [Status] [Discuss]
【题解】【树上点分治】
【借鉴黄学长的说法:点分治 对于一条树路径 只有经过或不经过一个点的情况,对于不经过的情况 把一棵树按这个点拆成好几棵分治就行了。考虑经过这个点的情况,对于这题,可以对这个点延伸出的几棵子树各做一次dfs,记录子树中出现的距离值,对于一棵树的距离值数组,把它排序求一次ans1,再对每棵子树分别求一个自己对自己的ans2,ans1-Σans2即为最后的ans】
【我们知道一条路径要么过根结点,要么在一棵子树中,这启发了我们可以使用分治算法。】
【路径在子树中的情况只需递归处理即可,我们只需分析如何处理路径过根结点的情况。】
【dep[i]表示点i到根结点的路径长度,cal(i)=X(X为根结点的某个儿子,且结点i在以X为根的子树内)】
【所以,我们要找的就是:dep[i]+dep[j]<=k且cal(i)≠cal(j)的(i,j)数量,即:ans=(i,j)[dep[i]+dep[j]<=k]-(i,j)[cal(i)=cal(j)]】
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[200010],nxt[200010],p[200010],v[200010],tot;
int f[200010],son[200010],dep[200010],vis[200010];
int n,k,d[200010],root,ans,sum;
inline void clear()
{
tot=-1;
memset(p,-1,sizeof(p));
memset(nxt,-1,sizeof(nxt));
memset(vis,0,sizeof(vis));
}
inline void add(int x,int y,int val)
{
tot++; a[tot]=y; nxt[tot]=p[x]; p[x]=tot; v[tot]=val;
tot++; a[tot]=x; nxt[tot]=p[y]; p[y]=tot; v[tot]=val;
}
void getroot(int x,int fa)
{
son[x]=1; f[x]=0;
int u=p[x];
while(u!=-1)
{
if(vis[a[u]]||a[u]==fa) {u=nxt[u]; continue;}
getroot(a[u],x);
son[x]+=son[a[u]];
f[x]=max(f[x],son[a[u]]);
u=nxt[u];
}
f[x]=max(f[x],sum-son[x]);
if(f[x]<f[root]) root=x;
}
void getdeep(int x,int fa)
{
dep[++dep[0]]=d[x];
int u=p[x];
while(u!=-1)
{
if(vis[a[u]]||a[u]==fa) {u=nxt[u]; continue;}
d[a[u]]=d[x]+v[u];
getdeep(a[u],x);
u=nxt[u];
}
}
inline int cal(int x,int now)
{
d[x]=now; dep[0]=0;
getdeep(x,0);
sort(dep+1,dep+dep[0]+1);
int l=1,r=dep[0],t=0;
while(l<r)
if(dep[l]+dep[r]<=k) t+=(r-l),l++;
else r--;
return t;
}
void work(int x)
{
ans+=cal(x,0); vis[x]=1;
int u=p[x];
while(u!=-1)
{
if(vis[a[u]]) {u=nxt[u]; continue; }
ans-=cal(a[u],v[u]);
sum=son[a[u]];
root=0;
getroot(a[u],root);
work(root);
}
}
int main()
{
int i,j;
while(1)
{
scanf("%d%d",&n,&k);
if(!n&&!k) return 0;
clear();
for(i=1;i<n;++i)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
}
sum=n; f[0]=1000000000; ans=0;
getroot(1,0);
work(root);
printf("%d\n",ans);
}
return 0;
}
既然无能更改,又何必枉自寻烦忧