返回顶部

Educational Codeforces Round 89 (Rated for Div. 2) D. Two Divisors (数学)

  • 题意:有\(n\)组数,对于每组数,问是否能找到两个因子\(d_{1},d{2}\),使得\(gcd(d_{1}+d_{2},a_{i}=1)\),如果有,输出它们,否则输出\(-1\).

  • 题解:对于这题,首先我们要推两个gcd的公式:

    ​ 1) $gcd(a,b)=gcd(a+b,b) $.

    ​ 2) 若\(gcd(a,c)=1 \ => gcd(a,bc)=gcd(a,b)\).

    这两个公式应该都很容易证明.

    因此我们推出:若\(gcd(x,y)=1\),则:\(gcd(x+y,xy)=1\).

    所以我们就可以对\(a_{i}\)质因数分解,得到:\(p_{1}^{k1},p_{2}^{k2}.....p_{n}^{kn}\).

    我们令\(d_{1}=p_{1}^{k1}\),\(d_{2}=\frac{a_{i}}{d_{1}}\)即可.

    下面给出公式的证明过程:

  • 代码: (用到了欧拉线性筛)

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    const int N = 1e7 + 10;
    const int mod = 1e9 + 7;
    const int INF = 0x3f3f3f3f;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<ll,ll> PLL;
    
    int n;
    int prime[N];
    int cnt;
    bool st[N];
    int a[N];
    vector<int> v;
    vector<PII> ans;
    
    void get_prime(){
    	for(int i=2;i<=N;++i){
    		if(!st[i]) prime[++cnt]=i;
    		for(int j=1;j<=cnt && prime[j]<=n/i;++j){
    			st[i*prime[j]]=true;
    			if(i%prime[j]==0) break;
    		}
    	}
    }
    
    void divide(int x){
    	 int tmp=x;
         for(int i=1;i<=cnt;++i){
         	if((ll)prime[i]*(ll)prime[i]>(ll)x) break;
         	if(x%prime[i]==0){
         	  int t=1;
         	  while(x%prime[i]==0){
         		x/=prime[i];
         		t*=prime[i];
         	  }
         	  v.pb(t);
         	}
         }
         if(x>1) v.pb(x);
         if(v.size()<2) ans.pb({-1,-1});
         else ans.pb({v[0],tmp/v[0]});	
         v.clear();
    }
    
    int main() {
        ios::sync_with_stdio(false);cin.tie(0);
    	cin>>n;
    	 for(int i=1;i<=n;++i){
    	 	cin>>a[i];
    	 }
    	 get_prime();
    	 for(int i=1;i<=n;++i){
    	 	divide(a[i]);
    	 }
    	 for(auto w:ans) printf("%d ",w.fi);
    	 printf("\n");
    	 for(auto w:ans) printf("%d ",w.se);
    
    
        return 0;
    }
    
posted @ 2020-06-12 21:47  Rayotaku  阅读(208)  评论(0编辑  收藏  举报