更具先序、中序遍历生成二叉树

/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* reConstructBinaryTree(vector<int> pre,vector<int> vin) {  //pre为先序 vin为中序
            int vinlen=vin.size();
            if(vinlen==0)
                return NULL;
            vector<int> left_pre,right_pre,left_vin,right_vin;    //
            //创建根节点,根节点肯定是前序遍历的第一个数
            TreeNode* head=new TreeNode(pre[0]);
            //找到中序遍历根节点所在位置,存放于变量gen中
            int gen=0;
            for(int i=0;i<vinlen;i++)
            {
                if (vin[i]==pre[0])
                {
                    gen=i;
                    break;
                }
            }
            //对于中序遍历,根节点左边的节点位于二叉树的左边,根节点右边的节点位于二叉树的右边
            //利用上述这点,对二叉树节点进行归并
            for(int i=0;i<gen;i++)
            {
                left_vin.push_back(vin[i]);
                left_pre.push_back(pre[i+1]);//前序第一个为根节点
            }
            for(int i=gen+1;i<vinlen;i++)
            {
                right_vin.push_back(vin[i]);
                right_pre.push_back(pre[i]);
            }
            //和shell排序的思想类似,取出前序和中序遍历根节点左边和右边的子树
            //递归,再对其进行上述所有步骤,即再区分子树的左、右子子数,直到叶节点
           head->left=reConstructBinaryTree(left_pre,left_vin);
           head->right=reConstructBinaryTree(right_pre,right_vin);
           return head;
    }
};

 

posted @ 2019-07-09 16:51  GodL  阅读(313)  评论(0编辑  收藏  举报