关于二项分布中方差的求法及其证明

看到网上几乎没有相关的证明,自己yy了一种证法,写的比较辣鸡

在二项分布\(X\sim B(n,p)\)中,令\(E(x)\)为期望,\(D(x)\)为方差。

众所周知\(E(x)=np\)

那么有\(D(x)=E(x^2)-E^2(x)=np(1-p)\)

简单证明一下第一个等号:

\[D(x)=\sum_{i=0}^{n}C_n^ip^i(i-p)^{n-i}(i-E(x))^2\\ =\sum_{i=0}^{n}C_n^ip^i(i-p)^{n-i}(i^2-2iE(x)+E^2(x))\\ =\sum_{i=0}^{n}C_n^ip^i(i-p)^{n-i}i^2-2E(x)\sum_{i=0}^{n}C_n^ip^i(i-p)^{n-i}i+E^2(x)\sum_{i=0}^{n}C_n^ip^i(i-p)^{n-i}\\ =E(x^2)-2E^2(x)+E^2(x)\\ =E(x^2)-E^2(x) \]

关于第二个等号,我们发现瓶颈在于如何计算\(E(x^2)\)

考虑化简:

\[\sum_{i=0}^{n}C_n^ip^i(1-p)^{n-i}i^2\\ =\sum_{i=0}^{n}C_n^ip^i(1-p)^{n-i}[i(i-1)+i]\\ =\sum_{i=2}^{n}C_n^ip^i(1-p)^{n-i}i(i-1)+\sum_{i=0}^{n}C_n^ip^i(1-p)^{n-i}i\\ =\sum_{i=2}^{n}\frac{n!}{i!(n-i)!}i(i-1)p^i(1-p)^{n-i}+E(X)\\ =\sum_{i=2}^{n}\frac{(n-2)!}{(i-2)!(n-i)!}n(n-1)p^i+np\\ =n(n-1)\sum_{i=2}^{n}C_{n-2}^{i-2}p^i(1-p)^{n-i}+np\\ =n(n-1)p^2\sum_{i=0}^{n-2}C_{n-2}^{i}p^i(1-p)^{n-2-i}+np\\ =n(n-1)p^2+np\\ =n^2p^2-np^2+np \]

那么:

\[E(x^2)-E^2(x)=n^2p^2-np^2+np-n^2p^2\\ =np-np^2\\ =np(1-p) \]

证毕。

posted @ 2021-08-19 15:35  lprdsb  阅读(1704)  评论(2编辑  收藏  举报