索引
1.什么是索引?
数据库索引,是数据库管理系统中一个排序的数据结构,索引的实现通常使用B树及其变种B+树。
在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
总结:更方便查找数据的数据结构
2.索引的作用?它的优点缺点是什么?
索引作用:协助快速查询、更新数据库表中数据(优点)。
缺点:
为表设置索引要付出代价的:
一是增加了数据库的存储空间
二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。
3.索引的优缺点?
创建索引可以大大提高系统的性能(优点):
1.通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
2.可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
3.可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
4.在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
5.通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
增加索引也有许多不利的方面(缺点):
1.创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
2.索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
3.当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
4.哪些列适合建立索引、哪些不适合建索引?
索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。
一般来说,应该在这些列上创建索引:
(1)在经常需要搜索的列上,可以加快搜索的速度;
(2)在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;
(3)在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;
(4)在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;
(5)在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;
(6)在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
对于有些列不应该创建索引:
(1)对于那些在查询中很少使用或者参考的列不应该创建索引。
这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。
(2)对于那些只有很少数据值的列也不应该增加索引。
这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。
(3)对于那些定义为text, image和bit数据类型的列不应该增加索引。
这是因为,这些列的数据量要么相当大,要么取值很少。
(4)当修改性能远远大于检索性能时,不应该创建索引。
这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。
5.什么样的字段适合建索引
唯一、不为空、经常被查询的字段
6.MySQL B+Tree索引和Hash索引的区别?
Hash索引和B+树索引的特点:
Hash索引结构的特殊性,其检索效率非常高,索引的检索可以一次定位;
B+树索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问;
为什么不都用Hash索引而使用B+树索引?
1)Hash索引不能使用范围查询;
2)Hash索引无法被用来避免数据的排序操作,因为Hash值的大小关系并不一定和Hash运算前的键值完全一样;
3)Hash索引不能利用部分索引键查询,对于组合索引,Hash索引在计算Hash值的时候是组合索引键合并后再一起计算Hash值,而不是单独计算Hash值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash索引也无法被利用;
4)Hash索引在任何时候都不能避免表扫描,由于不同索引键存在相同Hash值,所以即使取满足某个Hash键值的数据的记录条数,也无法从Hash索引中直接完成查询,还是要回表查询数据;
5)Hash索引遇到大量Hash值相等的情况后性能并不一定就会比B+树索引高。
补充:
1.MySQL中,只有HEAP/MEMORY引擎才显示支持Hash索引。
2.常用的InnoDB引擎中默认使用的是B+树索引,它会实时监控表上索引的使用情况,如果认为建立哈希索引可以提高查询效率,则自动在内存中的“自适应哈希索引缓冲区”建立哈希索引(在InnoDB中默认开启自适应哈希索引),通过观察搜索模式,MySQL会利用index key的前缀建立哈希索引,如果一个表几乎大部分都在缓冲池中,那么建立一个哈希索引能够加快等值查询。
B+树索引和哈希索引的明显区别是:
3.如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
4.如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
同理,哈希索引没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
5.哈希索引也不支持多列联合索引的最左匹配规则;
6.B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题。
7.在大多数场景下,都会有范围查询、排序、分组等查询特征,用B+树索引就可以了。
8.为什么说B+比B树更适合实际应用中操作系统的文件索引和数据库索引?
1.B+的磁盘读写代价更低
B+的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。
2.B+tree的查询效率更加稳定
由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。
9. 聚集索引和非聚集索引区别?
数据和索引合并的索引叫做聚集索引,数据和索引分离的索引叫做非聚集索引