pytorch实现回归任务
完整代码:
import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt import torch.optim as optim #生成数据 #随机取100个-1到1之间的数,利用unsqueeze将一维变成二维 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) y = x.pow(2) + 0.2*torch.rand(x.size()) #神经网络只能接受Variable的数 x,y = Variable(x),Variable(y) #绘制图像 plt.scatter(x.data.numpy(), y.data.numpy()) #plt.show() #定义网络 class Net(torch.nn.Module): def __init__(self, n_feature, n_hidden, n_output): super(Net, self).__init__() self.hidden = torch.nn.Linear(n_feature, n_hidden) self.predict = torch.nn.Linear(n_hidden,n_output) def forward(self, x): x = F.relu(self.hidden(x)) x = self.predict(x) return x net = Net(1, 10, 1) #print(net) #优化 optimizer = optim.SGD(net.parameters(), lr=0.5) loss_func = torch.nn.MSELoss() #可视化 plt.ion() #plt.show() for t in range(100): prediction = net(x) loss = loss_func(prediction, y) #预测值和真实值 optimizer.zero_grad() loss.backward() optimizer.step() #可视化 if t % 5 == 0: plt.cla() plt.scatter(x.data.numpy(), y.data.numpy()) plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) plt.text(0.5, 0, 'Loss=%.4f' % loss.item(), fontdict={'size': 20, 'color': 'red'}) plt.pause(0.1) plt.ioff() plt.show()
在我运行代码是,出现过以下报错:
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步