方差分析 anova一般指方差分析
1简介编辑
2原理编辑
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和表示,记作SSb,组间自由度dfb。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
3基本思想编辑
通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
举例分析:
下面我们用一个简单的例子来说明方差分析的基本思想:
如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:
患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11
健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87
问该地克山病患者与健康人的血磷值是否不同?
从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均值的变异情况,则总变异有以下两个来源:
组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;
组间变异,即由于克山病的影响使得患者与健康人组的血磷值均值大小不等。
而且:SS总=SS组间+SS组内 v总=v组间+v组内
如果用均方(离差平方和除以自由度)代替离差平方和以消除各组样本数不同的影响,则方差分析就是用组间均方去除组内均方的商(即F值)与1相比较,若F值接近1,则说明各组均值间的差异没有统计学意义,若F值远大于1,则说明各组均值间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。
利用统计学软件分析结果如下:
data a;
input type num @@;
cards;
1 0.84 1 1.05 1 1.20 1 1.20 1 1.39 1 1.53 1 1.67 1 1.80 1 1.87 1 2.07 1 2.11
2 0.54 2 0.64 2 0.64 2 0.75 2 0.76 2 0.81 2 1.16 2 1.20 2 1.34 2 1.35 2 1.48 2 1.56 2 1.87
;
run;
proc anova;
class type;
model num=type;
means type;
run;
自由度
|
离差平方和
|
均方
|
F 值
|
P值
|
|
SS组间(处理因素)
|
1
|
1.13418185
|
1.13418185
|
6.37
|
0.0193(有统计学意义)
|
SS组内(抽样误差)
|
22
|
3.91761399
|
0.17807336
|
||
总和
|
23
|
5.05179583
|
4应用编辑
在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。通常是比较不同实验条件下样本均值间的差异。例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。[1]
一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。
多个样本均值间两两比较
多个样本均值间两两比较常用q检验的方法,即Newman-keuls法,其基本步骤为:建立检验假设-->样本均值排序-->计算q值-->查q界值表判断结果。
多个实验组与一个对照组均值间两两比较
多个实验组与一个对照组均值间两两比较,若目的是减小第II类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。
5主要内容编辑
分析方法
根据资料设计类型的不同,有以下两种方差分析的方法:
2、对随机区组设计的多个样本均值比较,应采用配伍组设计的方差分析,即两因素方差分析。
两类方差异同
两类方差分析的异同:
两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。
基本步骤
整个方差分析的基本步骤如下:
1、建立检验假设;
H0:多个样本总体均值相等;
H1:多个样本总体均值不相等或不全等。
检验水准为0.05。
2、计算检验统计量F值;
3、确定P值并作出推断结果。
6假设检验编辑
1. 方差分析的假定条件为:
(1)各处理条件下的样本是随机的。
(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。
(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。
(4)各处理条件下的样本方差相同,即具有齐效性。
2. 方差分析的假设检验
假设有K个样本,如果原假设H0样本均数都相同,K个样本有共同的方差σ ,则K个样本来自具有共同方差σ和相同均值的总体。
如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。否则承认原假设,样本来自相同总体,处理间无差异。
应用条件:
-
各样本是相互独立的随机样本
-
各样本均来自正态分布总体
3. 各样本的总体方差相等,即具有方差齐性
7分类举例编辑
单因素
单因素方差分析:
(一)单因素方差分析概念理解步骤
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇女的生育率,研究学历对工资收入的影响等。这些问题都可以通过单因素方差分析得到答案。
单因素方差分析的第二步是剖析观测变量的方差。方差分析认为:观测变量值的变动会受控制变量和随机变量两方面的影响。据此,单因素方差分析将观测变量总的离差平方和分解为组间离差平方和和组内离差平方和两部分,用数学形式表述为:SST=SSA+SSE。
(二)单因素方差分析原理总结
容易理解:在观测变量总离差平方和中,如果组间离差平方和所占比例较大,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平方和所占比例小,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同水平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(三)单因素方差分析基本步骤
1、提出原假设:H0——无差异;H1——有显著差异
3、计算检验统计量的观测值和概率P值:该步骤的目的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性水平,并作出决策
(四)单因素方差分析的进一步分析
1、方差齐性检验
2、多重比较检验
单因素方差分析的基本分析只能判断控制变量是否对观测变量产生了显著影响。如果控制变量确实对观测变量产生了显著影响,进一步还应确定控制变量的不同水平对观测变量的影响程度如何,其中哪个水平的作用明显区别于其他水平,哪个水平的作用是不显著的,等等。
例如,如果确定了不同施肥量对农作物的产量有显著影响,那么还需要了解10公斤、20公斤、30公斤肥料对农作物产量的影响幅度是否有差异,其中哪种施肥量水平对提高农作物产量的作用不明显,哪种施肥量水平最有利于提高产量等。掌握了这些重要的信息就能够帮助人们制定合理的施肥方案,实现低投入高产出。
检验统计量的构造方法
(1)LSD方法
LSD方法称为最小显著性差异(Least Significant Difference)法。最小显著性差异法的字画就体现了其检验敏感性高的特点,即水平间的均值只要存在一定程度的微小差异就可能被检验出来。
正是如此,它利用全部观测变量值,而非仅使用某两组的数据。LSD方法适用于各总体方差相等的情况,但它并没有对犯一类错误的概率问题加以有效控制。
(2)S-N-K方法
S-N-K方法是一种有效划分相似性子集的方法。该方法适合于各水平观测值个数相等的情况,
3、其他检验
(1)先验对比检验
在多重比较检验中,如果发现某些水平与另外一些水平的均值差距显著,如有五个水平,其中x1、x2、x3与x4、x5的均值有显著差异,就可以进一步分析比较这两组总的均值是否存在显著差异,即1/3(x1+x2+x3)与1/2(x4+x5)是否有显著差异。这种事先指定各均值的系数,再对其线性组合进行检验的分析方法称为先验对比检验。通过先验对比检验能够更精确地掌握各水平间或各相似性子集间均值的差异程度。
(2)趋势检验
当控制变量为定序变量时,趋势检验能够分析随着控制变量水平的变化,观测变量值变化的总体趋势是怎样的,是呈现线性变化趋势,还是呈二次、三次等多项式变化。通过趋势检验,能够帮助人们从另一个角度把握控制变量不同水平对观测变量总体作用的程度。
多因素
多因素方差分析:
(一)多因素方差分析基本思想
多因素方差分析用来研究两个及两个以上控制变量是否对观测变量产生显著影响。这里,由于研究多个因素对观测变量的影响,因此称为多因素方差分析。多因素方差分析不仅能够分析多个因素对观测变量的独立影响,更能够分析多个控制因素的交互作用能否对观测变量的分布产生显著影响,进而最终找到利于观测变量的最优组合。
例如:
分析不同品种、不同施肥量对农作物产量的影响时,可将农作物产量作为观测变量,品种和施肥量作为控制变量。利用多因素方差分析方法,研究不同品种、不同施肥量是如何影响农作物产量的,并进一步研究哪种品种与哪种水平的施肥量是提高农作物产量的最优组合。
(二)多因素方差分析的其他功能
1、均值检验
在SPSS中,利用多因素方差分析功能还能够对各控制变量不同水平下观测变量的均值是否存在显著差异进行比较,实现方式有两种,即多重比较检验和对比检验。多重比较检验的方法与单因素方差分析类似。对比检验采用的是单样本t检验的方法,它将控制变量不同水平下的观测变量值看做来自不同总体的样本,并依次检验这些总体的均值是否与某个指定的检验值存在显著差异。其中,检验值可以指定为以下几种:
观测变量的均值(Deviation);
第一水平或最后一个水平上观测变量的均值(Simple);
前一水平上观测变量的均值(Difference);
后一水平上观测变量的均值(Helmert)。
2、控制变量交互作用的图形分析
控制变量的交互作用可以通过图形直观分析。
(三)多因素方差分析的进一步分析
1、建立非饱和模型
2、均值比较分析
3、控制变量交互作用的图形分析
协方差
协方差分析:
(一)协方差分析基本思想
通过上述的分析可以看到,不论是单因素方差分析还是多因素方差分析,控制因素都是可控的,其各个水平可以通过人为的努力得到控制和确定。但在许多实际问题中,有些控制因素很难人为控制,但它们的不同水平确实对观测变量产生了较为显著的影响。
例如,在研究农作物产量问题时,如果仅考察不同施肥量、品种对农作物产量的影响,不考虑不同地块等因素而进行方差分析,显然是不全面的。因为事实上有些地块可能有利于农作物的生长,而另一些却不利于农作物的生长。不考虑这些因素进行分析可能会导致:即使不同的施肥量、不同品种农作物产量没有产生显著影响,但分析的结论却可能相反。
再例如,分析不同的饲料对生猪增重是否产生显著差异。如果单纯分析饲料的作用,而不考虑生猪各自不同的身体条件(如初始体重不同),那么得出的结论很可能是不准确的。因为体重增重的幅度在一定程度上是包含诸如初始体重等其他因素的影响的。
(二)协方差分析的原理
协方差分析仍然沿承方差分析的基本思想,并在分析观测变量变差时,考虑了协变量的影响,人为观测变量的变动受四个方面的影响:即控制变量的独立作用、控制变量的交互作用、协变量的作用和随机因素的作用,并在扣除协变量的影响后,再分析控制变量的影响。
方差分析中的原假设是:协变量对观测变量的线性影响是不显著的;在协变量影响扣除的条件下,控制变量各水平下观测变量的总体均值无显著差异,控制变量各水平对观测变量的效应同时为零。检验统计量仍采用F统计量,它们是各均方与随机因素引起的均方比。
(三)协方差分析的应用举例
为研究三种不同饲料对生猪体重增加的影响,将生猪随机分成三组各喂养不同的饲料,得到体重增加的数据。由于生猪体重的增加理论上会受到猪自身身体条件的影响,于是收集生猪喂养前体重的数据,作为自身身体条件的测量指标。
14 逻辑与基础 |
|
---|
17 数论 |
|
---|
21 代数学 |
|
---|
27 几何学 |
|
---|
31 拓扑学 |
|
---|
34 数学分析 |
|
---|
41 函数论 |
|
---|
44 常微分方程 |
|
---|
47 偏微分方程 |
|
---|
51 动力系统 |
|
---|
57 泛函分析 |
|
---|
61 计算数学 |
|
---|
64 概率论 |
|
---|
67 数理统计学 |
|
---|
71 应用统计数学 |
|
---|
74 运筹学 |
|
---|
其他二级学科 |
|
---|
▪ 随机分布 | ▪ 均匀分布 | ▪ 泊松分布 | ▪ 核心分布 | ▪ 聚集分布 |
▪ 奈曼分布 | ▪ 泰勒幂法则 | ▪ χ2分布 | ▪ 正态分布 | ▪ χ2检验 |
▪ 聚类分析 | ▪ 列联表 | ▪ 相关系数 | ▪ 多元分析 | ▪ 随机化区组 |
▪ 秩和检验 | ▪ t检验 | ▪ 方差分析 | ▪ 变异系数 | ▪ 典范相关 |
▪ 序贯抽样 | ▪ 随机抽样 | ▪ 分层随机抽样 | ▪ 双重抽样 | ▪ 系统抽样 |
▪ 黑箱模型 | ▪ 白箱模型 | ▪ 还原性模型 | ▪ 整体性模型 | ▪ 自治模型 |
▪ 非自治模型 | ▪ 猎物-捕食者模型 | ▪ 空间明晰的种群模型 | ▪ 自由体模型 | ▪ 霍林圆盘方程 |
其他科技名词
▪ 概率单位变换 | ▪ 分对数变换 | ▪ 脚踏石模型 | ▪ 无限[等位]基因突变模型 | ▪ 逐步突变模型 |
▪ 更新概率模型 | ▪ 静态模型 | ▪ 动态模型 | ▪ 确定性模型 | ▪ 莱斯利矩阵 |
▪ 岛屿模型 | ▪ 大陆-岛屿模型 | ▪ 距离隔离模型 | ▪ 功能反应 | ▪ 数值反应 |
▪ 周限增长率 | ▪ 几何增长率 | ▪ 指数增长 | ▪ 逻辑斯谛增长 | ▪ S型生长曲线 |
▪ 平均拥挤度 | ▪ 拥挤效应 | ▪ 世代离散 | ▪ 世代重叠 | ▪ 种群指数 |
▪ 分布参数系统 | ▪ 集中参数系统 | ▪ 线性系统 | ▪ 非线性系统 | ▪ 确定性系统 |
▪ 随机系统 | ▪ 常系数系统 | ▪ 变系数系统 | ▪ 分室系统方法 | ▪ 实验组成成分法 |
▪ 反馈 | ▪ 灵敏度 | ▪ 生态缓冲能力 | ▪ 状态变量 | ▪ 模拟 |
▪ 校准 | ▪ 检验 | ▪ 验证 | ▪ 约束方程 | ▪ 稳定性 |
▪ 变异性 | ▪ 突变论 | ▪ 博弈论 | ▪ 生态位转移 | ▪ 熵 |
▪ 无序 | ▪ 霍普夫分岔 | ▪ 辛普森多样性指数 | ▪ 香农-维纳多样性指数 | ▪ 李雅普诺夫指数 |
▪ 相空间 | ▪ 吸引子 | ▪ 奇异吸引子 | ▪ 1/f噪声 | ▪ 自相似 |
▪ 分形 | ▪ 分数维 | ▪ 混沌 | ▪ 谐波分析 | |
-
-
1. 方差分析 .西南大学植物保护学院 [引用日期2013-06-23] .
-