ConcurrentHashMap(1.7版本)
1、基础属性
static final int DEFAULT_INITIAL_CAPACITY = 16;//默认初始容量 static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认加载因子 static final int DEFAULT_CONCURRENCY_LEVEL = 16;//默认线程并发度,默认最大允许16个线程并发访问,条件是这16个线程在分别在16个segments中 static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量 static final int MIN_SEGMENT_TABLE_CAPACITY = 2;//每个segment的最小容量 static final int MAX_SEGMENTS = 1 << 16;//segment个数限制 static final int RETRIES_BEFORE_LOCK = 2; // 计算size时使用 final int segmentMask;// 用于定位segment,大小等于segments数组的大小减1 final int segmentShift;// 用于定位段,大小等于32(hash值的位数)减去对segments的大小取以2为底的对数值 final Segment<K,V>[] segments;//存放数据的载体 transient Set<K> keySet; transient Set<Map.Entry<K,V>> entrySet; transient Collection<V> values;
2、Segment结构
static final class Segment<K,V> extends ReentrantLock implements Serializable { private static final long serialVersionUID = 2249069246763182397L; /** * The maximum number of times to tryLock in a prescan before * possibly blocking on acquire in preparation for a locked * segment operation. On multiprocessors, using a bounded * number of retries maintains cache acquired while locating * nodes. */ static final int MAX_SCAN_RETRIES = Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; transient volatile HashEntry<K,V>[] table;//每个Segment的数据都是一个 "类hashmap" transient int count;//当前Segment的元素个数 transient int modCount; transient int threshold;// 扩容阈值 final float loadFactor;//加载因子, threshold=capacity*loadFactor Segment(float lf, int threshold, HashEntry<K,V>[] tab) { this.loadFactor = lf; this.threshold = threshold; this.table = tab; } final V put(K key, int hash, V value, boolean onlyIfAbsent) { // 尝试获取锁,如果获取不到就进入到scanAndLockForPut方法去持续获取锁(获取不到锁就不干了) HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> first = entryAt(tab, index);//获取链表头 for (HashEntry<K,V> e = first;;) { if (e != null) { // 先判断该key值是否已存在,若存在则替换 K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); // 扩容 else setEntryAt(tab, index, node); // 直接放 ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; } /** * Doubles size of table and repacks entries, also adding the * given node to new table */ @SuppressWarnings("unchecked") private void rehash(HashEntry<K,V> node) { HashEntry<K,V>[] oldTable = table; int oldCapacity = oldTable.length; int newCapacity = oldCapacity << 1; //2倍扩充 threshold = (int)(newCapacity * loadFactor); //新的扩充阈值 HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; /** * 掩码是length-1,而length又是2的幂, 即掩码为00...0011...11(前面全0,后面全1) * 寻址方式 idx = hash & sizeMask * 优点:hash由key得来,是固定的,那么扩容之后,新的idx的值只可能是两个,我们在重构的时候,总有那么一段链表是可以看作一个整体放在数组的某个位置的 * ex: old:容量16,掩码1111; new:容量32,掩码11111 * 由于hash值是不变的,与运算后低四位与原来不变,只有第五位才会变(0或1),若为0,则newIdx不变,若为1,则newIdx = oldLength+oldIdx */ int sizeMask = newCapacity - 1; // 接下来就是重构这个segment了 for (int i = 0; i < oldCapacity ; i++) { HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; int idx = e.hash & sizeMask; if (next == null) // 只有这么一个节点,直接放就好了 newTable[idx] = e; else { HashEntry<K,V> lastRun = e; int lastIdx = idx; // lastRun特性:在这个链表中,lastRun后面的所有node的 idx 与 lastRun的 idx 一致,这样我们就可以将lastRun及其后面的所有node看作一个整体 for (HashEntry<K,V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // 处理lastRun之前的每一个节点 for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; } private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { HashEntry<K,V> first = entryForHash(this, hash); HashEntry<K,V> e = first; HashEntry<K,V> node = null; int retries = -1; // negative while locating node // 循环获取锁,如果获取不到就继续循环 while (!tryLock()) { HashEntry<K,V> f; // to recheck first below if (retries < 0) { if (e == null) { if (node == null) // speculatively create node // 此时本线程看到此位置为空,但是该位置可能被其它线程占用,因为抢锁没抢到 node = new HashEntry<K,V>(hash, key, value, null); retries = 0; } else if (key.equals(e.key)) retries = 0; else e = e.next; } // 重试次数超过限制时,则阻塞至获取到锁(lock()时阻塞方法,获取到锁后返回) else if (++retries > MAX_SCAN_RETRIES) { lock(); break; } else if ((retries & 1) == 0 && //如果有新的元素进入链表成为了表头,则重新走一遍该方法 (f = entryForHash(this, hash)) != first) { e = first = f; // re-traverse if entry changed retries = -1; } } return node; } private void scanAndLock(Object key, int hash) { // similar to but simpler than scanAndLockForPut HashEntry<K,V> first = entryForHash(this, hash); HashEntry<K,V> e = first; int retries = -1; while (!tryLock()) { HashEntry<K,V> f; if (retries < 0) { if (e == null || key.equals(e.key)) retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { e = first = f; retries = -1; } } } /** * Remove; match on key only if value null, else match both. */ final V remove(Object key, int hash, Object value) { if (!tryLock()) scanAndLock(key, hash); V oldValue = null; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> e = entryAt(tab, index); HashEntry<K,V> pred = null; while (e != null) { K k; HashEntry<K,V> next = e.next; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { V v = e.value; if (value == null || value == v || value.equals(v)) { if (pred == null) setEntryAt(tab, index, next); else pred.setNext(next); ++modCount; --count; oldValue = v; } break; } pred = e; e = next; } } finally { unlock(); } return oldValue; } final boolean replace(K key, int hash, V oldValue, V newValue) { if (!tryLock()) scanAndLock(key, hash); boolean replaced = false; try { HashEntry<K,V> e; for (e = entryForHash(this, hash); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { if (oldValue.equals(e.value)) { e.value = newValue; ++modCount; replaced = true; } break; } } } finally { unlock(); } return replaced; } final V replace(K key, int hash, V value) { if (!tryLock()) scanAndLock(key, hash); V oldValue = null; try { HashEntry<K,V> e; for (e = entryForHash(this, hash); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; e.value = value; ++modCount; break; } } } finally { unlock(); } return oldValue; } final void clear() { lock(); try { HashEntry<K,V>[] tab = table; for (int i = 0; i < tab.length ; i++) setEntryAt(tab, i, null); ++modCount; count = 0; } finally { unlock(); } } }
3、HashEntry结构
static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; HashEntry(int hash, K key, V value, HashEntry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } }
4、构造函数
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { // 基础性校验 if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; // 用于定位segment,大小为 lg(ssize) int ssize = 1; // segments的大小,即总的segment个数 while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; // 32-lg(ssize) this.segmentMask = ssize - 1; // 掩码,用以计算segments的下标 if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; // 总容量 / segment数量 = 每个segment的capacity if (c * ssize < initialCapacity) // 进一法 ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // 创建segments并初始化segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }
5、put方法
public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; // segments寻址 if ((s = (Segment<K,V>)UNSAFE.getObject (segments, (j << SSHIFT) + SBASE)) == null) // 判断是否需要初始化segments[j] s = ensureSegment(j);// 因为构造方法中只初始化了segments[0],其它位置需要初始化 return s.put(key, hash, value, false); } private Segment<K,V> ensureSegment(int k) { final Segment<K,V>[] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment<K,V> seg; // 检查该槽是否被其他线程初始化了。 if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { Segment<K,V> proto = ss[0]; // 这里相当于拷贝了一份segments[0]的架构 int cap = proto.table.length; float lf = proto.loadFactor; int threshold = (int)(cap * lf); HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {// 再次检查一遍该槽是否被其他线程初始化了。 Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); // 使用 while 循环,判断该槽是否已被其它线程初始化,如果没有,内部用 CAS,当前线程成功设值或其他线程成功设值后,退出;否则每次都要判断一次 while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) // CAS break; } } } return seg; }
6、size计算:在不加锁的情况下先后计算两次,如果两次计算的modCount一致,则认为在统计的时间内,没有其它线程对该map修改或删除,直接返回size;如果两次计算的modCount不一致,则对所有的Segment加锁,并计算size
public int size() { // Try a few times to get accurate count. On failure due to // continuous async changes in table, resort to locking. final Segment<K,V>[] segments = this.segments; int size; boolean overflow; // true if size overflows 32 bits long sum; // sum of modCounts long last = 0L; // previous sum int retries = -1; // first iteration isn't retry try { for (;;) { if (retries++ == RETRIES_BEFORE_LOCK) { // 计算了两次的modcount不一致, RETRIES_BEFORE_LOCK=2 for (int j = 0; j < segments.length; ++j) ensureSegment(j).lock(); // 对每个segment加锁 } sum = 0L; // 统计modCount size = 0; overflow = false; // 超出界限了 for (int j = 0; j < segments.length; ++j) { Segment<K,V> seg = segmentAt(segments, j); if (seg != null) { sum += seg.modCount; int c = seg.count; if (c < 0 || (size += c) < 0) overflow = true; } } if (sum == last) break; last = sum; } } finally { if (retries > RETRIES_BEFORE_LOCK) { for (int j = 0; j < segments.length; ++j) segmentAt(segments, j).unlock(); // 解锁 } } return overflow ? Integer.MAX_VALUE : size; }