PG的表和索引的膨胀

大家好,这次大表哥给大家分享的是PG的表和索引的膨胀。

首先,为什么会出现表和索引的膨胀?

总所周知, Postgres SQL 实现的MVCC的机制不同于 oracle , mysql innodb 的 undo tablespace 的机制。 表上所用的更新和删除等操作的行为,都不会实际的删除或修改,而是标记为死元祖 (dead rows or dead tuples)。

先做一个小的实验 用 extension pgstattuple 观测一下:

dbtest@[local:/tmp]:1992=#111446 create extension pgstattuple; CREATE EXTENSION

我们创建一张表,插入10000条记录。观察一下 dead tuple , 这个时候是 0

dbtest@[local:/tmp]:1992=#111446 create table tab1 (id int , name varchar(128)); CREATE TABLE dbtest@[local:/tmp]:1992=#111446 insert into tab1 select id, md5(id::varchar) from generate_series(1,10000) as id; INSERT 0 10000 dbtest@[local:/tmp]:1992=#111446 select * from pgstattuple('tab1'); table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count | dead_tuple_len | dead_tuple_percent | free_space | free_percent -----------+-------------+-----------+---------------+------------------+----------------+--------------------+------------+-------------- 688128 | 10000 | 610000 | 88.65 | 0 | 0 | 0 | 5776 | 0.84 (1 row)

我们尝试删除10条记录: 我们可以看到 dead_tuple_count = 10, dead_tuple_percent = 0.09 = 1- 10/10000 也是符合我们的预期的

dbtest@[local:/tmp]:1992=#111446 delete from tab1 where id <= 10; DELETE 10 dbtest@[local:/tmp]:1992=#111446 select * from pgstattuple('tab1'); table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count | dead_tuple_len | dead_tuple_percent | free_space | free_percent -----------+-------------+-----------+---------------+------------------+----------------+--------------------+------------+-------------- 688128 | 9990 | 609390 | 88.56 | 10 | 610 | 0.09 | 5776 | 0.84 (1 row)

我们再来创建一个索引,检查一下索引的膨胀:

dbtest@[local:/tmp]:1992=#111446 create index concurrently idx_name on tab1(name); CREATE INDEX

我们可以看到这个索引的 avg_leaf_density 是 89.27
avg_leaf_density 这个指标的含义是 索引树的密度, 这个值越低, 说明索引的膨胀度越大

dbtest@[local:/tmp]:1992=#111446 select * from pgstatindex('idx_name'); version | tree_level | index_size | root_block_no | internal_pages | leaf_pages | empty_pages | deleted_pages | avg_leaf_density | leaf_fragmentation ---------+------------+------------+---------------+----------------+------------+-------------+---------------+------------------+-------------------- 4 | 1 | 606208 | 3 | 1 | 72 | 0 | 0 | 89.27 | 0 (1 row)

我们这次删除5000条记录,查看 avg_leaf_density

dbtest@[local:/tmp]:1992=#111446 delete from tab1 where id <= 5000;

查询索引的avg_leaf_density 变成了 44.98, 大致是 之前的一半

dbtest@[local:/tmp]:1992=#111446 select * from pgstatindex('idx_name'); version | tree_level | index_size | root_block_no | internal_pages | leaf_pages | empty_pages | deleted_pages | avg_leaf_density | leaf_fragmentation ---------+------------+------------+---------------+----------------+------------+-------------+---------------+------------------+-------------------- 4 | 1 | 606208 | 3 | 1 | 72 | 0 | 0 | 44.98 | 0 (1 row)

我们可以运行 vacuum 的命令, 删除一下死的元祖,但是表和索引的存储空间不会释放给本地磁盘, 这也就是我们之前说的表和索引的膨胀:

dbtest@[local:/tmp]:1992=#111446 SELECT pg_size_pretty(pg_relation_size('tab1')) as table_size, pg_size_pretty(pg_relation_size('idx_name')) as index_size; table_size | index_size ------------+------------ 672 kB | 592 kB (1 row) dbtest@[local:/tmp]:1992=#111446 vacuum tab1; VACUUM dbtest@[local:/tmp]:1992=#111446 SELECT pg_size_pretty(pg_relation_size('tab1')) as table_size, pg_size_pretty(pg_relation_size('idx_name')) as index_size; table_size | index_size ------------+------------ 672 kB | 592 kB (1 row)

运行完vacuum 之后, 所有的死元祖应该都被清除掉了:

我们看到 dead_tuple_len 被重置为 0

dbtest@[local:/tmp]:1992=#111446 select * from pgstattuple('tab1'); table_len | tuple_count | tuple_len | tuple_percent | dead_tuple_count | dead_tuple_len | dead_tuple_percent | free_space | free_percent -----------+-------------+-----------+---------------+------------------+----------------+--------------------+------------+-------------- 688128 | 5000 | 305000 | 44.32 | 0 | 0 | 0 | 345292 | 50.18 (1 row)

虽然这部分存储标记不能够释放给磁盘, 但是可以给后操作的数据提供重复使用的存储空间。

vacuum full 虽然会回收磁盘的空间,但是会锁定整个表或者数据库,这个显然不是我们所期望的。

在了解了表和索引的膨胀后, 下一步 我们如何监控数据库,表,索引的膨胀呢?

下面的脚本可以通过官网的wiki 或者 github 上获取到:

监控脚本的SQL还是很复杂的,感谢PG社区的力量!

监控数据库级别的膨胀: https://wiki.postgresql.org/wiki/Show_database_bloat

SELECT current_database(), schemaname, tablename, /*reltuples::bigint, relpages::bigint, otta,*/ ROUND((CASE WHEN otta=0 THEN 0.0 ELSE sml.relpages::float/otta END)::numeric,1) AS tbloat, CASE WHEN relpages < otta THEN 0 ELSE bs*(sml.relpages-otta)::BIGINT END AS wastedbytes, iname, /*ituples::bigint, ipages::bigint, iotta,*/ ROUND((CASE WHEN iotta=0 OR ipages=0 THEN 0.0 ELSE ipages::float/iotta END)::numeric,1) AS ibloat, CASE WHEN ipages < iotta THEN 0 ELSE bs*(ipages-iotta) END AS wastedibytesFROM ( SELECT schemaname, tablename, cc.reltuples, cc.relpages, bs, CEIL((cc.reltuples*((datahdr+ma- (CASE WHEN datahdr%ma=0 THEN ma ELSE datahdr%ma END))+nullhdr2+4))/(bs-20::float)) AS otta, COALESCE(c2.relname,'?') AS iname, COALESCE(c2.reltuples,0) AS ituples, COALESCE(c2.relpages,0) AS ipages, COALESCE(CEIL((c2.reltuples*(datahdr-12))/(bs-20::float)),0) AS iotta -- very rough approximation, assumes all cols FROM ( SELECT ma,bs,schemaname,tablename, (datawidth+(hdr+ma-(case when hdr%ma=0 THEN ma ELSE hdr%ma END)))::numeric AS datahdr, (maxfracsum*(nullhdr+ma-(case when nullhdr%ma=0 THEN ma ELSE nullhdr%ma END))) AS nullhdr2 FROM ( SELECT schemaname, tablename, hdr, ma, bs, SUM((1-null_frac)*avg_width) AS datawidth, MAX(null_frac) AS maxfracsum, hdr+( SELECT 1+count(*)/8 FROM pg_stats s2 WHERE null_frac<>0 AND s2.schemaname = s.schemaname AND s2.tablename = s.tablename ) AS nullhdr FROM pg_stats s, ( SELECT (SELECT current_setting('block_size')::numeric) AS bs, CASE WHEN substring(v,12,3) IN ('8.0','8.1','8.2') THEN 27 ELSE 23 END AS hdr, CASE WHEN v ~ 'mingw32' THEN 8 ELSE 4 END AS ma FROM (SELECT version() AS v) AS foo ) AS constants GROUP BY 1,2,3,4,5 ) AS foo ) AS rs JOIN pg_class cc ON cc.relname = rs.tablename JOIN pg_namespace nn ON cc.relnamespace = nn.oid AND nn.nspname = rs.schemaname AND nn.nspname <> 'information_schema' LEFT JOIN pg_index i ON indrelid = cc.oid LEFT JOIN pg_class c2 ON c2.oid = i.indexrelid) AS smlORDER BY wastedbytes DESC

监控表级别的膨胀:

https://github.com/ioguix/pgsql-bloat-estimation/blob/master/table/table_bloat.sql

/* WARNING: executed with a non-superuser role, the query inspect only tables and materialized view (9.3+) you are granted to read. * This query is compatible with PostgreSQL 9.0 and more */ SELECT current_database(), schemaname, tblname, bs*tblpages AS real_size, (tblpages-est_tblpages)*bs AS extra_size, CASE WHEN tblpages > 0 AND tblpages - est_tblpages > 0 THEN 100 * (tblpages - est_tblpages)/tblpages::float ELSE 0 END AS extra_pct, fillfactor, CASE WHEN tblpages - est_tblpages_ff > 0 THEN (tblpages-est_tblpages_ff)*bs ELSE 0 END AS bloat_size, CASE WHEN tblpages > 0 AND tblpages - est_tblpages_ff > 0 THEN 100 * (tblpages - est_tblpages_ff)/tblpages::float ELSE 0 END AS bloat_pct, is_na -- , tpl_hdr_size, tpl_data_size, (pst).free_percent + (pst).dead_tuple_percent AS real_frag -- (DEBUG INFO) FROM ( SELECT ceil( reltuples / ( (bs-page_hdr)/tpl_size ) ) + ceil( toasttuples / 4 ) AS est_tblpages, ceil( reltuples / ( (bs-page_hdr)*fillfactor/(tpl_size*100) ) ) + ceil( toasttuples / 4 ) AS est_tblpages_ff, tblpages, fillfactor, bs, tblid, schemaname, tblname, heappages, toastpages, is_na -- , tpl_hdr_size, tpl_data_size, pgstattuple(tblid) AS pst -- (DEBUG INFO) FROM ( SELECT ( 4 + tpl_hdr_size + tpl_data_size + (2*ma) - CASE WHEN tpl_hdr_size%ma = 0 THEN ma ELSE tpl_hdr_size%ma END - CASE WHEN ceil(tpl_data_size)::int%ma = 0 THEN ma ELSE ceil(tpl_data_size)::int%ma END ) AS tpl_size, bs - page_hdr AS size_per_block, (heappages + toastpages) AS tblpages, heappages, toastpages, reltuples, toasttuples, bs, page_hdr, tblid, schemaname, tblname, fillfactor, is_na -- , tpl_hdr_size, tpl_data_size FROM ( SELECT tbl.oid AS tblid, ns.nspname AS schemaname, tbl.relname AS tblname, tbl.reltuples, tbl.relpages AS heappages, coalesce(toast.relpages, 0) AS toastpages, coalesce(toast.reltuples, 0) AS toasttuples, coalesce(substring( array_to_string(tbl.reloptions, ' ') FROM 'fillfactor=([0-9]+)')::smallint, 100) AS fillfactor, current_setting('block_size')::numeric AS bs, CASE WHEN version()~'mingw32' OR version()~'64-bit|x86_64|ppc64|ia64|amd64' THEN 8 ELSE 4 END AS ma, 24 AS page_hdr, 23 + CASE WHEN MAX(coalesce(s.null_frac,0)) > 0 THEN ( 7 + count(s.attname) ) / 8 ELSE 0::int END + CASE WHEN bool_or(att.attname = 'oid' and att.attnum < 0) THEN 4 ELSE 0 END AS tpl_hdr_size, sum( (1-coalesce(s.null_frac, 0)) * coalesce(s.avg_width, 0) ) AS tpl_data_size, bool_or(att.atttypid = 'pg_catalog.name'::regtype) OR sum(CASE WHEN att.attnum > 0 THEN 1 ELSE 0 END) <> count(s.attname) AS is_na FROM pg_attribute AS att JOIN pg_class AS tbl ON att.attrelid = tbl.oid JOIN pg_namespace AS ns ON ns.oid = tbl.relnamespace LEFT JOIN pg_stats AS s ON s.schemaname=ns.nspname AND s.tablename = tbl.relname AND s.inherited=false AND s.attname=att.attname LEFT JOIN pg_class AS toast ON tbl.reltoastrelid = toast.oid WHERE NOT att.attisdropped AND tbl.relkind in ('r','m') GROUP BY 1,2,3,4,5,6,7,8,9,10 ORDER BY 2,3 ) AS s ) AS s2 ) AS s3 -- WHERE NOT is_na -- AND tblpages*((pst).free_percent + (pst).dead_tuple_percent)::float4/100 >= 1 ORDER BY schemaname, tblname;

监控索引级别的膨胀: https://github.com/ioguix/pgsql-bloat-estimation/blob/master/btree/btree_bloat.sql

-- WARNING: executed with a non-superuser role, the query inspect only index on tables you are granted to read. -- WARNING: rows with is_na = 't' are known to have bad statistics ("name" type is not supported). -- This query is compatible with PostgreSQL 8.2 and after SELECT current_database(), nspname AS schemaname, tblname, idxname, bs*(relpages)::bigint AS real_size, bs*(relpages-est_pages)::bigint AS extra_size, 100 * (relpages-est_pages)::float / relpages AS extra_pct, fillfactor, CASE WHEN relpages > est_pages_ff THEN bs*(relpages-est_pages_ff) ELSE 0 END AS bloat_size, 100 * (relpages-est_pages_ff)::float / relpages AS bloat_pct, is_na -- , 100-(pst).avg_leaf_density AS pst_avg_bloat, est_pages, index_tuple_hdr_bm, maxalign, pagehdr, nulldatawidth, nulldatahdrwidth, reltuples, relpages -- (DEBUG INFO) FROM ( SELECT coalesce(1 + ceil(reltuples/floor((bs-pageopqdata-pagehdr)/(4+nulldatahdrwidth)::float)), 0 -- ItemIdData size + computed avg size of a tuple (nulldatahdrwidth) ) AS est_pages, coalesce(1 + ceil(reltuples/floor((bs-pageopqdata-pagehdr)*fillfactor/(100*(4+nulldatahdrwidth)::float))), 0 ) AS est_pages_ff, bs, nspname, tblname, idxname, relpages, fillfactor, is_na -- , pgstatindex(idxoid) AS pst, index_tuple_hdr_bm, maxalign, pagehdr, nulldatawidth, nulldatahdrwidth, reltuples -- (DEBUG INFO) FROM ( SELECT maxalign, bs, nspname, tblname, idxname, reltuples, relpages, idxoid, fillfactor, ( index_tuple_hdr_bm + maxalign - CASE -- Add padding to the index tuple header to align on MAXALIGN WHEN index_tuple_hdr_bm%maxalign = 0 THEN maxalign ELSE index_tuple_hdr_bm%maxalign END + nulldatawidth + maxalign - CASE -- Add padding to the data to align on MAXALIGN WHEN nulldatawidth = 0 THEN 0 WHEN nulldatawidth::integer%maxalign = 0 THEN maxalign ELSE nulldatawidth::integer%maxalign END )::numeric AS nulldatahdrwidth, pagehdr, pageopqdata, is_na -- , index_tuple_hdr_bm, nulldatawidth -- (DEBUG INFO) FROM ( SELECT n.nspname, i.tblname, i.idxname, i.reltuples, i.relpages, i.idxoid, i.fillfactor, current_setting('block_size')::numeric AS bs, CASE -- MAXALIGN: 4 on 32bits, 8 on 64bits (and mingw32 ?) WHEN version() ~ 'mingw32' OR version() ~ '64-bit|x86_64|ppc64|ia64|amd64' THEN 8 ELSE 4 END AS maxalign, /* per page header, fixed size: 20 for 7.X, 24 for others */ 24 AS pagehdr, /* per page btree opaque data */ 16 AS pageopqdata, /* per tuple header: add IndexAttributeBitMapData if some cols are null-able */ CASE WHEN max(coalesce(s.null_frac,0)) = 0 THEN 2 -- IndexTupleData size ELSE 2 + (( 32 + 8 - 1 ) / 8) -- IndexTupleData size + IndexAttributeBitMapData size ( max num filed per index + 8 - 1 /8) END AS index_tuple_hdr_bm, /* data len: we remove null values save space using it fractionnal part from stats */ sum( (1-coalesce(s.null_frac, 0)) * coalesce(s.avg_width, 1024)) AS nulldatawidth, max( CASE WHEN i.atttypid = 'pg_catalog.name'::regtype THEN 1 ELSE 0 END ) > 0 AS is_na FROM ( SELECT ct.relname AS tblname, ct.relnamespace, ic.idxname, ic.attpos, ic.indkey, ic.indkey[ic.attpos], ic.reltuples, ic.relpages, ic.tbloid, ic.idxoid, ic.fillfactor, coalesce(a1.attnum, a2.attnum) AS attnum, coalesce(a1.attname, a2.attname) AS attname, coalesce(a1.atttypid, a2.atttypid) AS atttypid, CASE WHEN a1.attnum IS NULL THEN ic.idxname ELSE ct.relname END AS attrelname FROM ( SELECT idxname, reltuples, relpages, tbloid, idxoid, fillfactor, indkey, pg_catalog.generate_series(1,indnatts) AS attpos FROM ( SELECT ci.relname AS idxname, ci.reltuples, ci.relpages, i.indrelid AS tbloid, i.indexrelid AS idxoid, coalesce(substring( array_to_string(ci.reloptions, ' ') from 'fillfactor=([0-9]+)')::smallint, 90) AS fillfactor, i.indnatts, pg_catalog.string_to_array(pg_catalog.textin( pg_catalog.int2vectorout(i.indkey)),' ')::int[] AS indkey FROM pg_catalog.pg_index i JOIN pg_catalog.pg_class ci ON ci.oid = i.indexrelid WHERE ci.relam=(SELECT oid FROM pg_am WHERE amname = 'btree') AND ci.relpages > 0 ) AS idx_data ) AS ic JOIN pg_catalog.pg_class ct ON ct.oid = ic.tbloid LEFT JOIN pg_catalog.pg_attribute a1 ON ic.indkey[ic.attpos] <> 0 AND a1.attrelid = ic.tbloid AND a1.attnum = ic.indkey[ic.attpos] LEFT JOIN pg_catalog.pg_attribute a2 ON ic.indkey[ic.attpos] = 0 AND a2.attrelid = ic.idxoid AND a2.attnum = ic.attpos ) i JOIN pg_catalog.pg_namespace n ON n.oid = i.relnamespace JOIN pg_catalog.pg_stats s ON s.schemaname = n.nspname AND s.tablename = i.attrelname AND s.attname = i.attname GROUP BY 1,2,3,4,5,6,7,8,9,10,11 ) AS rows_data_stats ) AS rows_hdr_pdg_stats ) AS relation_stats ORDER BY nspname, tblname, idxname;

从监控中发现了膨胀率高的表和索引之后, 想从磁盘上彻底释放物理存储空间,可以选择如下的方式

1)vacuum full 表名 – 会有独占锁,阻塞所有的DDL,DML 的命令操作,需要数据库的维护窗口, 有downtime 的要求。 一般不会建议生产这样做

2)Cluster 命令: 基于指定的索引作为聚簇重新对标进行编排。 示例语法: CLUSTER employees USING employees_ind;
这个操作也是需要独占锁的,会阻塞该表上的所有DDL,DML.

3)recreate table or reindex : 相当于重建表和索引。

如果选择重建表的话 是类似于 create table tab_new as select * from tab_old, 然后在 创建相关索引,最后进行表名的 rename 切换。还需注意表的权限:需要重新赋权。
另外这个也是需要应用系统的维护窗口时间的。

如果选择重建索引的话, 类似于 reindex CONCURRENTLY index_name, 需要注意的是需要2倍的索引存储空间,进行online的索引重建。

4) pg_repack 插件: 相比于vacuum 和 cluster 等需要独占锁的重量级的操作,pg_repack 是一个相对轻量级的在线去除表和索引膨胀的工具。
不会对目标表进行锁定。

下面我们来看一下 pg_repack 这个 extension , 项目首页的地址: https://reorg.github.io/pg_repack/

pg_repack 是项目 pg_reorg 的一个分支,很遗憾pg_reorg 这个项目在2011年的时候停摆了。

目前 pg_repack 支持的PG 版本是 PostgreSQL version PostgreSQL 9.4, 9.5, 9.6, 10, 11, 12, 13

目前来说 PG 14, 以及最新的PG 15版本 是不支持的, 安装的时候会报错: 指针类型的错误

INFRA [postgres@wqdcsrv3352 pg_repack]# make make[1]: Entering directory `/opt/postgreSQL/pg_repack/bin' gcc -std=gnu99 -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement -Werror=vla -Wendif-labels -Wmissing-format-attribute -Wformat-security -fno-strict-aliasing -fwrapv -fexcess-precision=standard -O2 -I/opt/postgreSQL/pg15/include -DREPACK_VERSION=1.4.7 -I. -I./ -I/opt/postgreSQL/pg15/include/postgresql/server -I/opt/postgreSQL/pg15/include/postgresql/internal -D_GNU_SOURCE -c -o pgut/pgut-fe.o pgut/pgut-fe.c pgut/pgut-fe.c: In function ‘get_username’: pgut/pgut-fe.c:652:2: warning: implicit declaration of function ‘getpwuid’ [-Wimplicit-function-declaration] pw = getpwuid(geteuid()); ^ pgut/pgut-fe.c:652:5: warning: assignment makes pointer from integer without a cast [enabled by default] pw = getpwuid(geteuid()); ^ pgut/pgut-fe.c:653:16: error: dereferencing pointer to incomplete type ret = (pw ? pw->pw_name : NULL); ^ make[1]: *** [pgut/pgut-fe.o] Error 1 make[1]: Leaving directory `/opt/postgreSQL/pg_repack/bin' make: *** [all] Error 2

Image.png

我们从git-hub上下载一下项目: git clone https://github.com/reorg/pg_repack.git

INFRA [postgres@wqdcsrv3352 postgreSQL]# git clone https://github.com/reorg/pg_repack.git Cloning into 'pg_repack'... remote: Enumerating objects: 3399, done. remote: Counting objects: 100% (102/102), done. remote: Compressing objects: 100% (53/53), done. remote: Total 3399 (delta 58), reused 81 (delta 49), pack-reused 3297 Receiving objects: 100% (3399/3399), 1.03 MiB | 0 bytes/s, done. Resolving deltas: 100% (2138/2138), done.

安装项目: 这里需要在root用户下 手动的export 一下PG_HOME 的环境变量, 使得 pg_config 可以读到 PG 实例的安装路径

INFRA [postgres@wqdcsrv3352 pg_repack]# make INFRA [postgres@wqdcsrv3352 pg_repack]# sudo su - Last login: Mon Jul 18 15:51:58 CST 2022 on pts/2 INFRA [root@wqdcsrv3352 ~]# export PG_HOME=/opt/postgreSQL/pg12 INFRA [root@wqdcsrv3352 ~]# cd /opt/postgreSQL/pg_repack INFRA [root@wqdcsrv3352 pg_repack]# export PATH=$PATH:$HOME/.local/bin:$HOME/bin:$PG_HOME/bin INFRA [root@wqdcsrv3352 pg_repack]# make install

安装完毕后, 我们模拟一张表 数据量1000000, 删除500000 数据测试一下:

postgres@[local:/tmp]:1999=#54672 create table tab (id int not null primary key , name varchar(100)); CREATE TABLE postgres@[local:/tmp]:1999=#54672 create index concurrently idx_name on tab(name); CREATE IND

Load 进入 1000000 数据,查看存储空间的使用情况:

postgres@[local:/tmp]:1999=#54672 insert into tab select id , md5(id::varchar) from generate_series(1,1000000) as id; INSERT 0 1000000 postgres@[local:/tmp]:1999=#54672 SELECT pg_size_pretty(pg_relation_size('tab')) as table_size, pg_size_pretty(pg_relation_size('tab_pkey')) as index_size_pk, pg_size_pretty(pg_relation_size('idx_name')) as index_size_name; table_size | index_size_pk | index_size_name ------------+---------------+----------------- 65 MB | 21 MB | 73 MB (1 row)

我们删除 800000 的数据, 再次观察存储空间:符合我们的预期,不会从磁盘释放空间

postgres@[local:/tmp]:1999=#54672 delete from tab where id <= 800000; DELETE 800000 postgres@[local:/tmp]:1999=#54672 SELECT pg_size_pretty(pg_relation_size('tab')) as table_size, pg_size_pretty(pg_relation_size('tab_pkey')) as index_size_pk, pg_size_pretty(pg_relation_size('idx_name')) as index_size_name; table_size | index_size_pk | index_size_name ------------+---------------+----------------- 65 MB | 21 MB | 73 MB (1 row)

我们查看表和索引的膨胀率: (参考上面的超级长的大SQL查询)

表的膨胀率: extra_pct (膨胀率) = 80.00959923206143 , 膨胀的空间 54624256/1024*1024= 52MB

current_database | schemaname | tblname | real_size | extra_size | extra_pct | fillfactor | bloat_size | bloat_pct | is_na ------------------+--------------------+-------------------------+-----------+------------+--------------------+------------+------------+--------------------+------- postgres | public | tab | 68272128 | 54624256 | 80.00959923206143 | 100 | 54624256 | 80.00959923206143 | f

索引的膨胀率: (参考上面的超级长的大SQL查询)

idx_name (膨胀率) = 86.26444159178433 , 膨胀的空间 66060288/10241024= 63MB
tab_pkey (膨胀率) = 82.040072859745 , 膨胀的空间 18448384/1024
1024= 17.59MB

current_database | schemaname | tblname | idxname | real_size | extra_size | extra_pct | fillfactor | bloat_size | bloat_pct | is_na ------------------+------------+------------------+-----------------------------------------------+-----------+------------+---------------------+------------+------------+----------------- ----+------- postgres | public | tab | idx_name | 76578816 | 66060288 | 86.26444159178433 | 90 | 64946176 | 84.80958493795 464 | f postgres | public | tab | tab_pkey | 22487040 | 18448384 | 82.040072859745 | 90 | 17997824 | 80.03642987249 545 | f

计算完膨胀的空间后,我们来 repack 一下这个表和上面的索引:

postgres@[local:/tmp]:1999=#60868 CREATE EXTENSION pg_repack; CREATE EXTENSION INFRA [postgres@wqdcsrv3352 bin]# ./pg_repack -k -d postgres -t tab -h /tmp -p 1999 INFO: repacking table "public.tab"

收集完膨胀的空间后,我们再来查看一下:明显收缩后的空间正如之前我们之前预期计算的膨胀空间一样

postgres@[local:/tmp]:1999=#62527 SELECT pg_size_pretty(pg_relation_size('tab')) as table_size, pg_size_pretty(pg_relation_size('tab_pkey')) as index_size_pk, pg_size_pretty(pg_relation_size('idx_name')) as index_size_name; table_size | index_size_pk | index_size_name ------------+---------------+----------------- 13 MB | 4408 kB | 4408 kB (1 row)

image.png

最后我们在简单地说一下 repack 的工作原理:

repack 实际上是创建了一张临时表, 并在原始表上创建触发器捕获数据变化,同步到临时表中, 并在临时表中重新创建索引,最后进行临时表和原始表的切换。
工作原理和mysql 的 pt-online-schema-change 的工具是十分类似的.

由于是触发器的同步原理,行级触发器的性能是最大的瓶颈,虽然可以在线repack, 我们依然要选择一个业务低峰期来处理。

转载自:https://www.modb.pro/db/439013

posted @ 2023-09-28 17:04  Cetus-Y  阅读(382)  评论(0编辑  收藏  举报