MariaDB · ANALYZE statement 语法

命令的输出

MariaDB> analyze select * from tbl1 where key1 between 10 and 200 and col1 like 'foo%'\G
*************************** 1\. row ***************************
id: 1
select_type: SIMPLE
table: tbl1
type: range
possible_keys: key1
key: key1
key_len: 5
ref: NULL
rows: 181
r_rows: 181
filtered: 100.00
r_filtered: 10.50
Extra: Using index condition; Using where

 

我们可以看到 ANALYZE 命令多了r_rows和r_filterd两行,我们来比较一下 EXPLAIN 计算的 rows/filtered 和 ANALYZE 计算的 r_rows/r_filtered 两列的区别。

r_rows 是基于实际观察的 rows 列,它表示实际从表中读取了多少行数据。

r_filtered 是基于实际观察的 filtered 列,它表示经过应用WHERE条件之后还有百分之多少的数据剩余。

输出结果解析

让我们来看一个更复杂的SQL。

analyze select * 
from orders, customer 
where 
customer.c_custkey=orders.o_custkey and 
customer.c_acctbal < 0 and 
orders.o_totalprice > 200*1000
+----+-------------+----------+------+---------------+-------------+---------+--------------------+--------+--------+----------+------------+-------------+
| id | select_type | table    | type | possible_keys | key         | key_len | ref                | rows   | r_rows | filtered | r_filtered | Extra       |
+----+-------------+----------+------+---------------+-------------+---------+--------------------+--------+--------+----------+------------+-------------+
|  1 | SIMPLE      | customer | ALL  | PRIMARY,...   | NULL        | NULL    | NULL               | 149095 | 150000 |    18.08 |       9.13 | Using where |
|  1 | SIMPLE      | orders   | ref  | i_o_custkey   | i_o_custkey | 5       | customer.c_custkey |      7 |     10 |   100.00 |      30.03 | Using where |
+----+-------------+----------+------+---------------+-------------+---------+--------------------+--------+--------+----------+------------+-------------+

 

从上面的结果,我们可以获得如下信息:

对于 customer 表,customer.rows=149095, customer.r_rows=150000. 从这两个值来看,优化器对 customer 表的访问估算还是很准确的。

customer.filtered=18.08, customer.r_filtered=9.13. 优化器有点高估了customer 表所匹配的记录的条数。(一般来说,当你有个全表扫描,并且 r_filtered 少于15%的时候,你得考虑为表增加相应的索引了)

orders.filtered=100, orders.r_filtered=30.03. 优化器无法预估经过条件(orders.o_totalprice > 200*1000)检查后还剩多少比例的记录。因此,优化器显示了100%。事实上,这个值是30%,通常来说30%的过滤性并不值得去建一个索引。但是对于多表Join,采集和使用列统计信息也许对查询有帮助,也可能帮助优化器选择更好的执行计划。(因为在关联中,关联条件和普通过滤条件组合以后,可能过滤性会非常好,并且有助于优化器判断哪张表做驱动表比较好)

posted @ 2020-07-08 21:22  Cetus-Y  阅读(331)  评论(0编辑  收藏  举报