Python正则处理多行日志一例(可配置化)
正则表达式基础知识请参阅《正则表达式基础知识》,本文使用正则表达式来匹配多行日志并从中解析出相应的信息。
假设现在有这样的SQL日志:
SELECT * FROM open_app WHERE 1 and `client_id` = 'a08f5e32909cc9418f' and `is_valid` = '1' order by id desc limit 32700,100; # Time: 160616 10:05:10 # User@Host: shuqin[qqqq] @ [1.1.1.1] Id: 46765069 # Schema: db_xxx Last_errno: 0 Killed: 0 # Query_time: 0.561383 Lock_time: 0.000048 Rows_sent: 100 Rows_examined: 191166 Rows_affected: 0 # Bytes_sent: 14653 SET timestamp=1466042710; SELECT * FROM open_app WHERE 1 and `client_id` = 'a08f5e32909cc9418f' and `is_valid` = '1' order by id desc limit 36700,100; # User@Host: shuqin[ssss] @ [2.2.2.2] Id: 46765069 # Schema: db_yyy Last_errno: 0 Killed: 0 # Query_time: 0.501094 Lock_time: 0.000042 Rows_sent: 100 Rows_examined: 192966 Rows_affected: 0 # Bytes_sent: 14966 SET timestamp=1466042727;
要求从中解析出相应的信息, 有如下知识点:
(1) 默认正则是单行模式, 要匹配多行,需要开启 "多行模式": MULTILINE; 对于点号,默认不匹配换行符,为了匹配换行符,也需要开启 "DOTALL模式";
(2) 为了匹配每个多行日志,必须使用非贪婪模式,即在 .* 后面加 ? , 否则第一个匹配会匹配到末尾;
(3) 分而治之。编写正确的正则表达式匹配指定长字符串是不容易的,采用的策略是分而治之,将整个字符串分解成多个子串,分别匹配字串。这里每个字串都是一行,匹配好一行后,可以进一步在行内更细化的匹配;
(4) 无处不在的空格符要使用 \s* 或 \s+ 来增强健壮性; 固定的普通字符串可以在正则表达式中更好地标识各个字串,更容易地匹配到。
(5) Python 正则有两个常用用法: re.findall , re.match ; 前者的匹配结果是一个列表, 每个列表元素是一个元组, 匹配一个多行日志;元组的每个元素用来提取对应捕获分组的字符串; re.match 的匹配结果是一个 Match 对象, 可以通过 group(n) 来获取每个捕获分组的匹配字符串。下面的程序特意两种都用到了。对于多行匹配,使用了 re.findall ; 对于行内匹配,使用了 re.match ; 初学者常问这两者那两者有什么区别, 其实动手试试就知道了。
(6) 展示结构使用 Map. 解析出结果后,必然要展示或做成报告,使用 Map & List 结合的复合结构通常是非常适宜的选择。 比如这一例,如果要展示所有 SQL 日志详情,可以做成
{"tablename1": [{sqlobj11}, {sqlobj12}], ..., "tablenameN": [{sqlobjN1}, {sqlobjN2}] } ,每个 sqlobj 结构为:
{"sql": "select xxx", "QueryTime": 0.5600, ...}
要展示简要的报告,比如每个表的 SQL 统计, 可以做成
{"tablename1": {"sql11": 98, "sql12": 16}, ..., "tablenameN": {"sqlN1": 75, "sqlN2": 23} }
Python 程序实现:
import re globalRegex = r'^\s*(.*?)# (User@Host:.*?)# (Schema:.*?)# (Query_time:.*?)# Bytes_sent:(.*?)SET timestamp=(\d+);\s*$' costRegex = r'Query_time:\s*(.*)\s*Lock_time:\s*(.*)\s*Rows_sent:\s*(\d+)\s*Rows_examined:\s*(\d+)\s*Rows_affected:\s*(\d+)\s*' schemaRegex = r'Schema:\s*(.*)\s*Last_errno:(.*)\s*Killed:\s*(.*)\s*' def readSlowSqlFile(slowSqlFilename): f = open(slowSqlFilename) ftext = '' for line in f: ftext += line f.close() return ftext def findInText(regex, text): return re.findall(regex, text, flags=re.DOTALL+re.MULTILINE) def parseSql(sqlobj, sqlText): try: if sqlText.find('#') != -1: sqlobj['sql'] = sqlText.split('#')[0].strip() sqlobj['time'] = sqlText.split('#')[1].strip() else: sqlobj['sql'] = sqlText.strip() sqlobj['time'] = '' except: sqlobj['sql'] = sqlText.strip() def parseCost(sqlobj, costText): matched = re.match(costRegex, costText) sqlobj['Cost'] = costText if matched: sqlobj['QueryTime'] = matched.group(1).strip() sqlobj['LockTime'] = matched.group(2).strip() sqlobj['RowsSent'] = int(matched.group(3)) sqlobj['RowsExamined'] = int(matched.group(4)) sqlobj['RowsAffected'] = int(matched.group(5)) def parseSchema(sqlobj, schemaText): matched = re.match(schemaRegex, schemaText) sqlobj['Schema'] = schemaText if matched: sqlobj['Schema'] = matched.group(1).strip() sqlobj['LastErrno'] = int(matched.group(2)) sqlobj['Killed'] = int(matched.group(3)) def parseSQLObj(matched): sqlobj = {} try: if matched and len(matched) > 0: parseSql(sqlobj, matched[0].strip()) sqlobj['UserHost'] = matched[1].strip() sqlobj['ByteSent'] = int(matched[4]) sqlobj['timestamp'] = int(matched[5]) parseCost(sqlobj, matched[3].strip()) parseSchema(sqlobj, matched[2].strip()) return sqlobj except: return sqlobj if __name__ == '__main__': files = ['slow_sqls.txt'] alltext = '' for f in files: text = readSlowSqlFile(f) alltext += text allmatched = findInText(globalRegex, alltext) tablenames = ['open_app'] if not allmatched or len(allmatched) == 0: print 'No matched. exit.' exit(1) sqlobjMap = {} for matched in allmatched: sqlobj = parseSQLObj(matched) if len(sqlobj) == 0: continue for tablename in tablenames: if sqlobj['sql'].find(tablename) != -1: if not sqlobjMap.get(tablename): sqlobjMap[tablename] = [] sqlobjMap[tablename].append(sqlobj) break resultMap = {} for (tablename, sqlobjlist) in sqlobjMap.iteritems(): sqlstat = {} for sqlobj in sqlobjlist: if sqlobj['sql'] not in sqlstat: sqlstat[sqlobj['sql']] = 0 sqlstat[sqlobj['sql']] += 1 resultMap[tablename] = sqlstat f_res = open('/tmp/res.txt', 'w') f_res.write('-------------------------------------: \n') f_res.write('Bref results: \n') for (tablename, sqlstat) in resultMap.iteritems(): f_res.write('tablename: ' + tablename + '\n') sortedsqlstat = sorted(sqlstat.iteritems(), key=lambda d:d[1], reverse = True) for sortedsql in sortedsqlstat: f_res.write('sql = %s\ncounts: %d\n\n' % (sortedsql[0], sortedsql[1])) f_res.write('-------------------------------------: \n\n') f_res.write('-------------------------------------: \n') f_res.write('Detail results: \n') for (tablename, sqlobjlist) in sqlobjMap.iteritems(): f_res.write('tablename: ' + tablename + '\n') f_res.write('sqlinfo: \n') for sqlobj in sqlobjlist: f_res.write('sql: ' + sqlobj['sql'] + ' QueryTime: ' + str(sqlobj.get('QueryTime')) + ' LockTime: ' + str(sqlobj.get('LockTime')) + '\n') f_res.write(str(sqlobj) + '\n\n') f_res.write('-------------------------------------: \n') f_res.close()
可配置
事实上,可以做成可配置的。只要给定行间及行内关键字集合,可以分割多行及行内字段,就可以分别提取相应的内容。
这里有个基本函数 matchOneLine: 根据一个依序分割一行内容的关键字列表,匹配一行内容,得到每个关键字对应的内容。这个函数用于匹配行内内容。
配置方式: 采用列表的列表。列表中的每个元素列表是可以分割和匹配单行内容的关键字列表。 每个关键字都用于分割单行的某个区域的内容。 为了提升解析性能,这里对关键字列表进行了预编译正则表达式,以便在解析字符串的时候不做重复工作。
见如下代码:
#!/usr/bin/python #_*_encoding:utf-8_*_ import re # config line keywords to seperate lines. ksconf = [['S'], ['# User@Host:','Id:'] , ['# Schema:', 'Last_errno:', 'Killed:'], ['# Query_time:','Lock_time:', 'Rows_sent:', 'Rows_examined:', 'Rows_affected:'], ['# Bytes_sent:'], ['SET timestamp=']] files = ['slow_sqls.txt'] #ksconf = [['id:'], ['name:'], ['able:']] #files = ['stu.txt'] globalConf = {'ksconf': ksconf, 'files': files} def produceRegex(keywordlistInOneLine): ''' build the regex to match keywords in the list of keywordlistInOneLine ''' oneLineRegex = "^\s*" oneLineRegex += "(.*?)".join(keywordlistInOneLine) oneLineRegex += "(.*?)\s*$" return oneLineRegex def readFile(filename): f = open(filename) ftext = '' for line in f: ftext += line f.close() return ftext def readAllFiles(files): return ''.join(map(readFile, files)) def findInText(regex, text, linesConf): ''' return a list of maps, each map is a match to multilines, in a map, key is the line keyword and value is the content corresponding to the key ''' matched = regex.findall(text) if empty(matched): return [] allMatched = [] linePatternMap = buildLinePatternMap(linesConf) for onematch in matched: oneMatchedMap = buildOneMatchMap(linesConf, onematch, linePatternMap) allMatched.append(oneMatchedMap) return allMatched def buildOneMatchMap(linesConf, onematch, linePatternMap): sepLines = map(lambda ks:ks[0], linesConf) lenOflinesInOneMatch = len(sepLines) lineMatchedMap = {} for i in range(lenOflinesInOneMatch): lineContent = sepLines[i] + onematch[i].strip() linekey = getLineKey(linesConf[i]) lineMatchedMap.update(matchOneLine(linesConf[i], lineContent, linePatternMap)) return lineMatchedMap def matchOneLine(keywordlistOneLine, lineContent, patternMap): ''' match lineContent with a list of keywords , and return a map in which key is the keyword and value is the content matched the key. eg. keywordlistOneLine = ["host:", "ip:"] , lineContent = "host: qinhost ip: 1.1.1.1" return {"host:": "qinhost", "ip": "1.1.1.1"} ''' ksmatchedResult = {} if len(keywordlistOneLine) == 0 or lineContent.strip() == "": return {} linekey = getLineKey(keywordlistOneLine) if empty(patternMap): linePattern = getLinePattern(keywordlistOneLine) else: linePattern = patternMap.get(linekey) lineMatched = linePattern.findall(lineContent) if empty(lineMatched): return {} kslen = len(keywordlistOneLine) if kslen == 1: ksmatchedResult[cleankey(keywordlistOneLine[0])] = lineMatched[0].strip() else: for i in range(kslen): ksmatchedResult[cleankey(keywordlistOneLine[i])] = lineMatched[0][i].strip() return ksmatchedResult def empty(obj): return obj is None or len(obj) == 0 def cleankey(dirtykey): ''' clean unused characters in key ''' return re.sub(r"[# :]", "", dirtykey) def printMatched(allMatched, linesConf): allks = [] for kslist in linesConf: allks.extend(kslist) for matched in allMatched: for k in allks: print cleankey(k) , "=>", matched.get(cleankey(k)) print '\n' def buildLinePatternMap(linesConf): linePatternMap = {} for keywordlistOneLine in linesConf: linekey = getLineKey(keywordlistOneLine) linePatternMap[linekey] = getLinePattern(keywordlistOneLine) return linePatternMap def getLineKey(keywordlistForOneLine): return "_".join(keywordlistForOneLine) def getLinePattern(keywordlistForOneLine): return re.compile(produceRegex(keywordlistForOneLine)) def testMatchOneLine(): assert len(matchOneLine([], "haha", {})) == 0 assert len(matchOneLine(["host"], "", {})) == 0 assert len(matchOneLine("", "haha", {})) == 0 assert len(matchOneLine(["host", "ip"], "host:qqq addr: 1.1.1.1", {})) == 0 lineMatchMap1 = matchOneLine(["id:"], "id: 123456", {"id:": re.compile(produceRegex(["id:"]))}) assert lineMatchMap1.get("id") == "123456" lineMatchMap2 = matchOneLine(["host:", "ip:"], "host: qinhost ip: 1.1.1.1 ", {"host:_ip:": re.compile(produceRegex(["host:", "ip:"]))}) assert lineMatchMap2.get("host") == "qinhost" assert lineMatchMap2.get("ip") == "1.1.1.1" print 'testMatchOneLine passed.' if __name__ == '__main__': testMatchOneLine() files = globalConf['files'] linesConf = globalConf['ksconf'] sepLines = map(lambda ks:ks[0], linesConf) text = readAllFiles(files) wholeRegex = produceRegex(sepLines) print 'wholeRegex: ', wholeRegex compiledPattern = re.compile(wholeRegex, flags=re.DOTALL+re.MULTILINE) allMatched = findInText(compiledPattern, text, linesConf) printMatched(allMatched, linesConf)
如果想以下多行解析文本文件,只需要修改下 ksconf = [['id:'], ['name:'], ['able:']]。
id:1 name:shu able:swim,study id:2 name:qin able:sleep,run