二十分钟快速上手Kafka开发(Java示例)

引子

Kafka 是一个高性能、高可用、高可靠的支持事件数据流的消息队列系统,是实时计算的可靠数据源。

本文给出使用 Kafka 的基本示例。关于 Kafka 的更多原理性的信息,可阅读《Kafka权威指南》一书。

基本知识

基本概念

  • 事件(Event):包含 [key, value, timestamp, headers] ,是写入 Kafka 或从 Kafka 读取的数据对象。通常是由其它数据源或设备源触发而来;事件可以看做是消息或记录;
  • 主题(Topic):将同一类事件对象组织在一起的名字空间。生产者写入指定的 Topic ,消费者订阅并从 Topic 中读取数据;
  • 分区(Partition):分区是事件在主题中的存储单元。同一个主题下的所有事件会存放在多个分区里;分区可以保证 Kafka 的高可用和可伸缩性。Kafka 保证数据写入分区和从分区读取的顺序是一致的;
  • 偏移量(Offset):消费者读取消息时会向 _consumer_offset 的特殊主题提交消息偏移量,便于追踪消息读取进度;如果发生分区再均衡(消费者群组中的消费者上线或下线),可以控制消息读取的不丢失和一致性;

Kafka 遵循生产者-消费者模型(P-C):

  • 生产者(Producer): 往 Kafka 分区写数据的数据生产者;
  • 消费者(Consumer): 从 Kafka 分区读取数据的数据消费者;消费者通常会处于某个消费者群组里。

消息系统的基本原理见: “【整理】互联网服务端技术体系:服务解耦之消息系统”

流程图

Kafka 生产者写入示意图:

Kafka 消费者读取示意图:


准备工作

Zookeeper 和 Kafka

“Zookeeper Download” 下载 zookeeper 压缩包,从 “Kafka Download” 下载 Kafka 压缩包,使用 tar xzvf xxx.tar.gz 解压即可。

启动服务

启动 Zookeeper 服务。切换到 Zookeeper 解压目录下,执行如下命令:

bin/zkServer.sh start-foreground

启动 Kafka 服务。切换到 Kafka 解压目录下,执行如下命令:

bin/kafka-server-start.sh config/server.properties

创建和查看消息主题

执行如下命令,创建了一个 order-events 的消息主题:

bin/kafka-topics.sh --create --topic order-events --bootstrap-server localhost:9092

查看主题 order-events 的信息:

bin/kafka-topics.sh --describe --topic order-events --bootstrap-server localhost:9092

Java示例

步骤一:引入 POM 依赖

       <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_2.13</artifactId>
            <version>2.7.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-streams</artifactId>
            <version>2.7.0</version>
        </dependency>

        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.7.0</version>
        </dependency>

步骤二:创建Kafka消息发送组件

package cc.lovesq.kafkamsg;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import java.util.Properties;
import java.util.concurrent.TimeUnit;

/**
 * @Description kafka消息发送
 * @Date 2021/2/4 10:47 上午
 * @Created by qinshu
 */
@Component
public class KafkaMessageProducer {

    private static Log log = LogFactory.getLog(KafkaMessageProducer.class);

    private KafkaProducer producer;

    @PostConstruct
    public void init() {
        Properties properties = new Properties();
        properties.put("bootstrap.servers","localhost:9092");    // 指定 Broker
        properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");  // 将 key 的 Java 对象转成字节数组
        properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); // 将 value 的 Java 对象转成字节数组
        properties.put("acks", "1");       // 消息至少成功发给一个副本后才返回成功
        properties.put("retries", "5");    // 消息重试 5 次

        producer = new KafkaProducer<String,String>(properties);

    }

    /**
     * 同步发送消息
     */
    public void send(ProducerRecord record) {
        try {
            producer.send(record).get(200, TimeUnit.MILLISECONDS);
        } catch (Exception ex) {
            log.error(ex.getMessage(), ex);
        }

    }

    /**
     * 异步发送消息
     */
    public void sendAsync(ProducerRecord record, Callback callback) {
        try {
            producer.send(record, callback);
        } catch (Exception ex) {
            log.error(ex.getMessage(), ex);
        }

    }
}

步骤三: 创建Kafka消息消费组件

package cc.lovesq.kafkamsg;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;

/**
 * @Description kafka消息接收
 * @Date 2021/2/4 11:04 上午
 * @Created by qinshu
 */
@Component
public class KafkaMessageConsumer {

    private static Log log = LogFactory.getLog(KafkaMessageConsumer.class);

    private KafkaConsumer consumer;

    @PostConstruct
    public void init() {
        Properties properties = new Properties();
        properties.put("bootstrap.servers","localhost:9092");  // 指定 Broker
        properties.put("group.id", "experiment");              // 指定消费组群 ID
        properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer"); // 将 key 的字节数组转成 Java 对象
        properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");  // 将 value 的字节数组转成 Java 对象

        consumer = new KafkaConsumer(properties);
        consumer.subscribe(Collections.singleton("order-events"));  // 订阅主题 order-events

        new Thread(this::consumer).start();
    }

    public void consumer() {
        try {
            while (true) {
                ConsumerRecords<String,String> records = consumer.poll(Duration.ofMillis(100));
                for (ConsumerRecord<String,String> record: records) {
                    String info = String.format("[Topic: %s][Partition:%d][Offset:%d][Key:%s][Message:%s]",
                            record.topic(), record.partition(), record.offset(), record.key(), record.value());
                    log.info("Received:" + info);
                }
            }
        } finally {
            consumer.close();
        }

    }
}

步骤四:创建消息发送者(业务),这里借用了“后端简易实验框架” 的功能。这里的消息对象可以替换成自己工程里的对象哈,稍加改动即可。

package cc.lovesq.experiments;

import cc.lovesq.constants.DeliveryType;
import cc.lovesq.controller.GoodsSnapshotController;
import cc.lovesq.kafkamsg.KafkaMessageProducer;
import cc.lovesq.model.BookInfo;
import cc.lovesq.model.GoodsInfo;
import cc.lovesq.model.Order;
import cc.lovesq.model.transfer.BookInfoToMessageTransfer;
import cc.lovesq.result.BaseResult;
import com.alibaba.fastjson.JSON;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.springframework.stereotype.Component;

import javax.annotation.Resource;
import java.util.Random;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @Description 下单实验
 * @Date 2021/1/4 10:50 上午
 * @Created by qinshu
 */
@Component
public class BookExperiment implements IExperiment {

    private static Log log = LogFactory.getLog(BookExperiment.class);

    @Resource
    private GoodsSnapshotController goodsSnapshotController;

    @Resource
    private KafkaMessageProducer producer;

    private ExecutorService es = Executors.newFixedThreadPool(10);

    @Override
    public void test() {
        generateOrders();
    }

    // 模拟并发下单
    public void generateOrders() {
        for (int i=1; i < 1000; i++) {
            es.submit(() -> {
                book();
            });
        }
    }

    Random random = new Random(System.currentTimeMillis());

    private BaseResult book() {
        BookInfo bookInfo = new BookInfo();
        Order order = new Order();

        Long shopId = 654321L + random.nextInt(10000);
        Long userId = 1234L + random.nextInt(1000);
        Long goodsId = 5678L + random.nextInt(4000);
        order.setShopId(shopId);
        order.setUserId(userId);
        order.setDeliveryType(DeliveryType.express);
        order.setIsCodPay(false);
        bookInfo.setOrder(order);

        GoodsInfo goods = new GoodsInfo();
        goods.setGoodsId(goodsId);
        goods.setShopId(shopId);
        goods.setTitle("认养一头牛");
        goods.setDesc("2箱*250g");
        bookInfo.setGoods(goods);

        BaseResult bookResult = goodsSnapshotController.save(bookInfo);
        log.info("下单结果:" + JSON.toJSONString(bookResult));

        // 下单成功后发送消息
        producer.sendAsync(
                BookInfoToMessageTransfer.transfer(bookInfo),
                (metadata, exception) -> callback(bookInfo, metadata, exception));

        return bookResult;
    }

    // 消息发送后的回调函数
    private void callback(BookInfo bookInfo, RecordMetadata metadata, Exception ex) {
        if (metadata != null) {
            log.info("发送订单消息:" + bookInfo.getOrder().getOrderNo() + " 偏移量: " + metadata.offset() + " 主题: " + metadata.topic());
        } else {
            log.error("发送订单消息失败: " + ex.getMessage(), ex);
        }
    }
}

至此,就可以实现 Kafka 的消息发送和消息消费示例了。

Kafka 还可以用于可靠的数据源,为实时计算组件提供事件流,如下图所示代码:

package cc.lovesq.kafkamsg;

import cc.lovesq.model.BookInfo;
import cc.lovesq.util.TimeUtil;
import com.alibaba.fastjson.JSONObject;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.KStream;
import org.apache.kafka.streams.kstream.Materialized;
import org.apache.kafka.streams.kstream.Printed;
import org.springframework.stereotype.Component;

import javax.annotation.PostConstruct;
import java.util.Properties;

/**
 * @Description Kafka 事件流
 * @Date 2021/2/4 8:17 下午
 * @Created by qinshu
 */
@Component
public class KafkaMessageStream {

    private static Log log = LogFactory.getLog(KafkaMessageStream.class);

    @PostConstruct
    public void init() {
        Properties properties = new Properties();
        properties.put(StreamsConfig.APPLICATION_ID_CONFIG, "orderCount");
        properties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        properties.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
        properties.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());

        StreamsBuilder streamBuilder = new StreamsBuilder();
        KStream<String,String> source = streamBuilder.stream("order-events");

        // 计算下单中每个 goodsId 出现的次数
        KStream result = source.filter(
                (key, value) -> value.startsWith("{") && value.endsWith("}")
        ).mapValues(
                value -> JSONObject.parseObject(value, BookInfo.class)
        ).mapValues(
                bookInfo -> bookInfo.getGoods().getGoodsId().toString()
        ).groupBy((key,value) -> value).count(Materialized.as("goods-order-count")
        ).mapValues(value -> Long.toString(value)).toStream();

        result.print(Printed.toSysOut());

        new Thread(
                () -> {
                    TimeUtil.sleepInSecs(10);
                    KafkaStreams streams = new KafkaStreams(streamBuilder.build(), properties);
                    streams.start();
                    log.info("stream-start ...");
                    TimeUtil.sleepInSecs(10);
                    streams.close();
                }
        ).start();
    }
}

这里还必须事先创建一个 Topic = goods-order-count 的主题:

bin/kafka-topics.sh --create --topic goods-order-count --bootstrap-server localhost:9092

小结

Kafka 是一个很有潜力的用于业务系统和大数据系统的消息系统。本文给出了使用 Kafka 进行消息发送、消息消费以及事件流处理的基本示例,方便 Kafka 初学者(包括我自己)更好滴上手,进一步去探索 Kafka.

参考资料

posted @ 2021-02-05 19:20  琴水玉  阅读(10163)  评论(0编辑  收藏  举报