C++11多线程------总结版
在 Linux 中,有 Pthread; windows 中有CreateThread 与 CloseHandle;但有了 C++11 的 std::thread 以后,你可以在语言层面编写多线程程序了,直接的好处就是多线程程序的可移植性得到了很大的提高,所以作为一名 C++ 程序员,熟悉 C++11 的多线程编程方式还是很有益处的。下面介绍c++11多线程的介绍。
C++11 新标准中引入了四个头文件来支持多线程编程,他们分别是<atomic> 、<thread>、<mutex>、<condition_variable>和<future>。
- <atomic>:该头文主要声明了两个类, std::atomic 和 std::atomic_flag,另外还声明了一套 C 风格的原子类型和与 C 兼容的原子操作的函数。
- <thread>:该头文件主要声明了 std::thread 类,另外 std::this_thread 命名空间也在该头文件中。
- <mutex>:该头文件主要声明了与互斥量(mutex)相关的类,包括 std::mutex 系列类,std::lock_guard, std::unique_lock, 以及其他的类型和函数。
- <condition_variable>:该头文件主要声明了与条件变量相关的类,包括 std::condition_variable 和 std::condition_variable_any。
- <future>:该头文件主要声明了 std::promise, std::package_task 两个 Provider 类,以及 std::future 和 std::shared_future 两个 Future 类,另外还有一些与之相关的类型和函数,std::async() 函数就声明在此头文件中。
1、thread
std::thread 在 <thread> 头文件中声明,因此使用 std::thread 时需要包含 <thread> 头文件。
相关函数:
- 获取线程 ID。
- 检查线程是否可被 join。
joinable : 代表该线程是可执行线程。
not-joinable :通常一下几种情况会导致线程成为not-joinable
1) 由thread的缺省构造函数构造而成(thread()没有参数)。
2) 该thread被move过(包括move构造和move赋值)
3) 该线程调用过join或者detach
- Join 线程。
-
阻塞当前线程,等子线程完成其执行。*this 所标识的线程的完成同步于从 join() 的成功返回。
该方法简单暴力,主线程等待子进程期间什么都不能做。thread::join()会清理子线程相关的内存空间,此后thread object将不再和这个子线程相关了,即thread object不再joinable了,所以join对于一个子线程来说只可以被调用一次,为了实现更精细的线程等待机制,可以使用条件变量等机制。
- Detach 线程
- 从 thread 对象分离执行的线程,允许执行独立地持续。一旦线程退出,则释放所有分配的资源。调用
detach
后, *this 不再占有任何线程。 - 在任何一个时间点上,线程是可结合(joinable)或者是可分离的(detached),一个可结合的线程能够被其他线程回收资源和杀死,在被其他线程回收之前,它的存储器资源如栈,是不释放的,相反,一个分离的线程是不能被其他线程回收或杀死的,它的存储器资源在它终止时由系统自动释放。
- Swap 线程 。
- 返回 native handle。
- 检测硬件并发特性。
- 实例:
// thread example #include <iostream> // std::cout #include <thread> // std::thread void foo() { // do stuff... } void bar(int x) { // do stuff... } int main() { std::thread first (foo); // spawn new thread that calls foo() std::thread second (bar,0); // spawn new thread that calls bar(0) std::cout << "main, foo and bar now execute concurrently...\n"; // synchronize threads: first.join(); // pauses until first finishes second.join(); // pauses until second finishes std::cout << "foo and bar completed.\n"; return 0; }
2、mutex 互斥锁
C++ 11中与 Mutex 相关的类(包括锁类型)和函数都声明在 <mutex> 头文件。
Mutex 系列类(四种)
- std::mutex,最基本的 Mutex 类。
- std::recursive_mutex,递归 Mutex 类。
- std::time_mutex,定时 Mutex 类。
- std::recursive_timed_mutex,定时递归 Mutex 类。
Lock 类(两种)
- std::lock_guard,与 Mutex RAII 相关,方便线程对互斥量上锁。
- std::unique_lock,与 Mutex RAII 相关,方便线程对互斥量上锁,但提供了更好的上锁和解锁控制。
其他类型
- std::once_flag
- std::adopt_lock_t
- std::defer_lock_t
- std::try_to_lock_t
函数
- std::try_lock,尝试同时对多个互斥量上锁。
- std::lock,可以同时对多个互斥量上锁。
- std::call_once,如果多个线程需要同时调用某个函数,call_once 可以保证多个线程对该函数只调用一次。
std::unique_lock:
#include <iostream> #include<thread> #include<unistd.h> #include<mutex> using namespace std; std::mutex mymutex; void sayHello() { int k=0; unique_lock<mutex> lock(mymutex); while(k<2) { k++; cout<<endl<<"hello"<<endl; sleep(2); } } void sayWorld() { unique_lock<mutex> lock(mymutex); while(1) { cout<<endl<<"world"<<endl; sleep(1); } } int main() { thread threadHello(&sayHello); thread threadWorld(&sayWorld); threadHello.join(); threadWorld.join(); return 0; }
首先同时运行threadHello线程和threadWorld线程
先进入threadHello线程的sayHello()函数,这个时候加了mymutex锁,另外一个threadWorld线程进入后发现mymutex锁没有释放,只能等待。
当过去两个循环(每个循环2秒后)threadHello线程结束,unique_lock lock(mymutex)的生命周期结束,mymutex锁释放,执行threadWorld线程,此时开始一直say world。
std::unique_lock 的构造函数的数目相对来说比 std::lock_guard 多,其中一方面也是因为 std::unique_lock 更加灵活,从而在构造 std::unique_lock 对象时可以接受额外的参数
3、future
<future> 头文件中包含了以下几个类和函数:
- Providers 类:std::promise, std::package_task
- Futures 类:std::future, shared_future.
- Providers 函数:std::async()
- 其他类型:std::future_error, std::future_errc, std::future_status, std::launch.
(1) std::promise 是C++11并发编程中常用的一个类,常配合std::future使用。其作用是在一个线程t1中保存一个类型typename T的值,可供相绑定的std::future对象在另一线程t2中获取;一个线程获取另一个线程的运算结果。
可以通过 get_future 来获取与该 promise 对象相关联的 future 对象,调用该函数之后,两个对象共享相同的共享状态(shared state)
- promise 对象是异步 Provider,它可以在某一时刻设置共享状态的值。
- future 对象可以异步返回共享状态的值,或者在必要的情况下阻塞调用者并等待共享状态标志变为 ready,然后才能获取共享状态的值。
#include <iostream> #include <future> #include <chrono> void Thread_Fun1(std::promise<int> &p) { //为了突出效果,可以使线程休眠5s std::this_thread::sleep_for(std::chrono::seconds(5)); int iVal = 233; std::cout << "传入数据(int):" << iVal << std::endl; //传入数据iVal p.set_value(iVal); } void Thread_Fun2(std::future<int> &f) { //阻塞函数,直到收到相关联的std::promise对象传入的数据 auto iVal = f.get(); //iVal = 233 std::cout << "收到数据(int):" << iVal << std::endl; } int main() { //声明一个std::promise对象pr1,其保存的值类型为int std::promise<int> pr1; //声明一个std::future对象fu1,并通过std::promise的get_future()函数与pr1绑定 std::future<int> fu1 = pr1.get_future(); //创建一个线程t1,将函数Thread_Fun1及对象pr1放在线程里面执行 std::thread t1(Thread_Fun1, std::ref(pr1)); //创建一个线程t2,将函数Thread_Fun2及对象fu1放在线程里面执行 std::thread t2(Thread_Fun2, std::ref(fu1)); //阻塞至线程结束 t1.join(); t2.join(); return 1; }
(2)std::packaged_task
std::packaged_task它包装了一个可调用的目标(如function, lambda expression, bind expression, or another function object),以便异步调用,它和promise在某种程度上有点像,promise保存了一个共享状态的值,而packaged_task保存的是一 个函数。 主线程获取子线程中运算结果
// packaged_task example #include <iostream> // std::cout #include <future> // std::packaged_task, std::future #include <chrono> // std::chrono::seconds #include <thread> // std::thread, std::this_thread::sleep_for // count down taking a second for each value: int countdown (int from, int to) { for (int i=from; i!=to; --i) { std::cout << i << '\n'; std::this_thread::sleep_for(std::chrono::seconds(1)); } std::cout << "Lift off!\n"; return from-to; } int main () { std::packaged_task<int(int,int)> tsk (countdown); // set up packaged_task std::future<int> ret = tsk.get_future(); // get future std::thread th (std::move(tsk),10,0); // spawn thread to count down from 10 to 0 // ... int value = ret.get(); // wait for the task to finish and get result std::cout << "The countdown lasted for " << value << " seconds.\n"; th.join(); return 0; }
(3)std::future,std::shared_future
std::future 可以用来获取异步任务的结果,因此可以把它当成一种简单的线程间同步的手段。std::future 通常由某个 Provider 创建,你可以把 Provider 想象成一个异步任务的提供者,Provider 在某个线程中设置共享状态的值,与该共享状态相关联的 std::future 对象调用 get(通常在另外一个线程中) 获取该值,如果共享状态的标志不为 ready,则调用 std::future::get 会阻塞当前的调用者,直到 Provider 设置了共享状态的值(此时共享状态的标志变为 ready),std::future::get 返回异步任务的值或异常(如果发生了异常)
std::shared_future 与 std::future 类似,但是 std::shared_future 可以拷贝、多个 std::shared_future 可以共享某个共享状态的最终结果(即共享状态的某个值或者异常)。shared_future 可以通过某个 std::future 对象隐式转换(参见 std::shared_future 的构造函数),或者通过 std::future::share() 显示转换,无论哪种转换,被转换的那个 std::future 对象都会变为 not-valid.
4、atomic
所谓的原子操作,取的就是“原子是最小的、不可分割的最小个体”的意义,它表示在多个线程访问同一个全局资源的时候,能够确保所有其他的线程都不在同一时间内访问相同的资源。也就是他确保了在同一时刻只有唯一的线程对这个资源进行访问。这有点类似互斥对象对共享资源的访问的保护,但是原子操作更加接近底层,因而效率更高。
C++中对共享数据的存取在并发条件下可能会引起data race的undifined行为,需要限制并发程序以某种特定的顺序执行,有两种方式:使用mutex保护共享数据,原子操作:针对原子类型操作要不一步完成,要么不做,不可能出现操作一半被切换CPU,这样防止由于多线程指令交叉执行带来的可能错误。非原子操作下,某个线程可能看见的是一个其它线程操作未完成的数据。
#include <iostream> // std::cout #include <atomic> // std::atomic, std::atomic_flag, ATOMIC_FLAG_INIT #include <thread> // std::thread, std::this_thread::yield #include <vector> // std::vector // 由 false 初始化一个 std::atomic<bool> 类型的原子变量 std::atomic<bool> ready(false); std::atomic_flag winner = ATOMIC_FLAG_INIT; void do_count1m(int id) { while (!ready) { std::this_thread::yield(); } // 等待 ready 变为 true. for (volatile int i=0; i<1000000; ++i) {} // 计数 if (!winner.test_and_set()) { std::cout << "thread #" << id << " won!\n"; } } int main () { std::vector<std::thread> threads; std::cout << "spawning 10 threads that count to 1 million...\n"; for (int i=1; i<=10; ++i) threads.push_back(std::thread(count1m,i)); ready = true; for (auto& th : threads) th.join(); return 0; }
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread, std::this_thread::yield std::atomic <int> foo = 0; void set_foo(int x) { foo = x; // 调用 std::atomic::operator=(). } void print_foo() { while (foo == 0) { // wait while foo == 0 std::this_thread::yield(); } std::cout << "foo: " << foo << '\n'; } int main() { std::thread first(print_foo); std::thread second(set_foo, 10); first.join(); second.join(); return 0; }
#include <iostream> // std::cout #include <atomic> // std::atomic #include <thread> // std::thread #include <vector> // std::vector // a simple global linked list: struct Node { int value; Node* next; }; std::atomic<Node*> list_head(nullptr); void append(int val) { // append an element to the list Node* newNode = new Node{val, list_head}; // next is the same as: list_head = newNode, but in a thread-safe way: while (!list_head.compare_exchange_weak(newNode->next,newNode)) {} // (with newNode->next updated accordingly if some other thread just appended another node) } int main () { // spawn 10 threads to fill the linked list: std::vector<std::thread> threads; for (int i = 0; i < 10; ++i) threads.push_back(std::thread(append, i)); for (auto& th : threads) th.join(); // print contents: for (Node* it = list_head; it!=nullptr; it=it->next) std::cout << ' ' << it->value; std::cout << '\n'; // cleanup: Node* it; while (it=list_head) {list_head=it->next; delete it;} return 0; }
参考:
http://www.cplusplus.com/reference/multithreading/
https://www.cnblogs.com/huty/p/8516997.html