__sync_fetch_and_add函数(Redis源码学习)

__sync_fetch_and_add函数(Redis源码学习)

在学习redis-3.0源码中的sds文件时,看到里面有如下的C代码,之前从未接触过,所以为了全面学习redis源码,追根溯源,学习一下__sync_fetch_and_add的系列函数:

#define update_zmalloc_stat_add(__n) __sync_add_and_fetch(&used_memory, (__n))

在网上查找相关 __sync_add_and_fetch 函数的知识点,基本都是一样的内容,于是总结如下。

1.背景由来

实现多线程环境下的计数器操作,统计相关事件的次数. 当然我们知道,count++这种操作不是原子的。一个自加操作,本质是分成三步的:

 1 从缓存取到寄存器
 2 在寄存器加1
 3 存入缓存。

由于时序的因素,多个线程操作同一个全局变量,会出现问题。这也是并发编程的难点。在目前多核条件下,这种困境会越来越彰显出来。
最简单的处理办法就是加锁保护,这也是我最初的解决方案。看下面的代码:

    pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;
    pthread_mutex_lock(&count_lock);
    global_int++;
    pthread_mutex_unlock(&count_lock);

后来在网上查找资料,找到了__sync_fetch_and_add系列的命令,相关英文文章: Multithreaded simple data type access and atomic variables,

2.系列函数

__sync_fetch_and_add系列一共有十二个函数,有加/减/与/或/异或/等函数的原子性操作函数,__sync_fetch_and_add,顾名思义,先fetch,然后自加,返回的是自加以前的值。以count = 4为例,调用__sync_fetch_and_add(&count,1)之后,返回值是4,然后,count变成了5.

简单验证代码如下sync_fetch_add.c:

#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv){
    int count = 4;
    printf("111 count:%d\n",count);
    int retval = __sync_fetch_and_add(&count,10);

    printf("222 retval:%d\n",retval);
    printf("222 count:%d\n",count);

    return 0;
}

linux 系统中命令行执行:gdb -g -o sync_fetch_add sync_fetch_add.c

得到可执行文件,执行后得到如下结果:

./sync_fetch_add 
111 count:4
222 retval:4
222 count:14

其他函数可以自行验证。

有__sync_fetch_and_add,自然也就有__sync_add_and_fetch,呵呵这个的意思就很清楚了,先自加,在返回。他们的关系与i++和++i的关系是一样的。有了这个函数,对于多线程对全局变量进行自加,我们就再也不用理线程锁了。下面这行代码,和上面被pthread_mutex保护的那行代码作用是一样的,而且也是线程安全的。

在用gcc编译的时候要加上选项 -march=i686,我在执行上面代码时,gcc没加该参数,使用到的版本gcc version 4.4.7 20120313 , 上面代码能正常运行通过。

下面是这群函数的全部,无非是先fetch再运算,或者先运算再fetch。

type __sync_fetch_and_add (type *ptr, type value);
type __sync_fetch_and_sub (type *ptr, type value);
type __sync_fetch_and_or (type *ptr, type value);
type __sync_fetch_and_and (type *ptr, type value);
type __sync_fetch_and_xor (type *ptr, type value);
type __sync_fetch_and_nand (type *ptr, type value);
type __sync_add_and_fetch (type *ptr, type value);
type __sync_sub_and_fetch (type *ptr, type value);
type __sync_or_and_fetch (type *ptr, type value);
type __sync_and_and_fetch (type *ptr, type value);
type __sync_xor_and_fetch (type *ptr, type value);
type __sync_nand_and_fetch (type *ptr, type value);

GCC 提供的原子操作
gcc从4.1.2提供了__sync_*系列的built-in函数,用于提供加减和逻辑运算的原子操作。

其声明如下:

type __sync_fetch_and_add (type  * ptr, type value, ...)
type __sync_fetch_and_sub (type  * ptr, type value, ...)
type __sync_fetch_and_or (type  * ptr, type value, ...)
type __sync_fetch_and_and (type  * ptr, type value, ...)
type __sync_fetch_and_xor (type  * ptr, type value, ...)
type __sync_fetch_and_nand (type  * ptr, type value, ...)


type __sync_add_and_fetch (type  * ptr, type value, ...)
type __sync_sub_and_fetch (type  * ptr, type value, ...)
type __sync_or_and_fetch (type  * ptr, type value, ...)
type __sync_and_and_fetch (type  * ptr, type value, ...)
type __sync_xor_and_fetch (type  * ptr, type value, ...)
type __sync_nand_and_fetch (type  * ptr, type value, ...)

这两组函数的区别在于第一组返回更新前的值,第二组返回更新后的值。

看网上有大师的代码测试例子Alexander Sandler,现拷贝为 sync_fetch2.c 文件如下并验证执行结果:

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <linux/unistd.h>
#include <sys/syscall.h>
#include <errno.h>

#define INC_TO 1000000 // one million...

int global_int = 0;
  
pid_t gettid( void )
{
	return syscall( __NR_gettid );
}

void *thread_routine( void *arg )
{
	int i;
	int proc_num = (int)(long)arg;
	cpu_set_t set;

	CPU_ZERO( &set );
	CPU_SET( proc_num, &set );

	if (sched_setaffinity( gettid(), sizeof( cpu_set_t ), &set ))
	{
		perror( "sched_setaffinity" );
		return NULL;
	}

	for (i = 0; i < INC_TO; i++)
	{
		// global_int++;
		__sync_fetch_and_add( &global_int, 1 );
	}

	return NULL;
}

int main()
{
	int procs = 0;
	int i;
	pthread_t *thrs;    

	// Getting number of CPUs
	procs = (int)sysconf( _SC_NPROCESSORS_ONLN );
	if (procs < 0)
	{
		perror( "sysconf" );
		return -1;
	}

	thrs = (pthread_t *)malloc( (sizeof( pthread_t )) * procs );
	if (thrs == NULL)
	{
		perror( "malloc" );
		return -1;
	}

	printf( "Starting %d threads...\n", procs );

	for (i = 0; i < procs; i++)
	{
		if (pthread_create( &thrs[i], NULL, thread_routine,
			(void *)(long)i ))
		{
			perror( "pthread_create" );
			procs = i;
			break;
		}
	}

	for (i = 0; i < procs; i++)
		pthread_join( thrs[i], NULL );

	free( thrs );

	printf( "After doing all the math, global_int value is: %d\n",global_int );
	printf( "Expected value is: %d\n", INC_TO * procs );

	return 0;
}

上面代码在RHEL6.9中编译:g++ -g -o sync_fetch2 sync_fetch2.c -lpthread
执行结果为:

./sync_fetch2 
Starting 4 threads...
After doing all the math, global_int value is: 4000000
Expected value is: 4000000

如果将上面thread_routine函数中的这两句换一下,直接用变量加加,则每次执行都得到不一样的值

	global_int++;
	// __sync_fetch_and_add( &global_int, 1 );

修改后得到结果如下:

$./sync_fetch2                                
Starting 4 threads...
After doing all the math, global_int value is: 1428371
Expected value is: 4000000

$ ./sync_fetch2 
Starting 4 threads...
After doing all the math, global_int value is: 2479197
Expected value is: 4000000

3.小结

可以从代码验证中看到 __sync_fetch_and_add 函数的作用,在多线程中,对简单的变量运算能保证结果的正确,至于其他函数,参考上面代码,读者可以自行验证。

另外基于上面例子,有人修改代码,加上执行消耗时间,通过__sync_fetch_and_add和加锁机制的对比,发现__sync_fetch_and_add比加解锁机制快了6-7倍,执行速度还是很快的,因为涉及到汇编代码,后续有机会会再学习验证。

本人才疏学浅,错误不当之处,请批评指正。
如果文章对您有一点点用处,我会很高兴能帮到您。多谢关注推荐和转发,谢谢!

image

参考网址:

http://www.alexonlinux.com/multithreaded-simple-data-type-access-and-atomic-variables
https://blog.csdn.net/i_am_jojo/article/details/7591743
https://www.zhihu.com/question/280022939
https://blog.csdn.net/long2324066440/article/details/72784084

posted @   叶金鑫  阅读(238)  评论(0编辑  收藏  举报
编辑推荐:
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
阅读排行:
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用
点击右上角即可分享
微信分享提示