源地址:http://blog.csdn.net/ppn029012/article/details/8923501
1. 赌场风云(背景介绍)
最近一个赌场的老板发现生意不畅,于是派出手下去赌场张望。经探子回报,有位大叔在赌场中总能赢到钱,玩得一手好骰子,几乎是战无不胜。而且每次玩骰子的时候周围都有几个保镖站在身边,让人不明就里,只能看到每次开局,骰子飞出,沉稳落地。老板根据多年的经验,推测这位不善之客使用的正是江湖失传多年的"偷换骰子大法”(编者注:偷换骰子大法,用兜里自带的骰子偷偷换掉均匀的骰子)。老板是个冷静的人,看这位大叔也不是善者,不想轻易得罪他,又不想让他坏了规矩。正愁上心头,这时候进来一位名叫HMM帅哥,告诉老板他有一个很好的解决方案。
不用近其身,只要在远处装个摄像头,把每局的骰子的点数都记录下来。
然后HMM帅哥将会运用其强大的数学内力,用这些数据推导出
1. 该大叔是不是在出千?
2. 如果是在出千,那么他用了几个作弊的骰子? 还有当前是不是在用作弊的骰子。
3. 这几个作弊骰子出现各点的概率是多少?
天呐,老板一听,这位叫HMM的甚至都不用近身,就能算出是不是在作弊,甚至都能算出别人作弊的骰子是什么样的。那么,只要再当他作弊时,派人围捕他,当场验证骰子就能让他哑口无言。
2. HMM是何许人也?
在让HMM开展调查活动之前,该赌场老板也对HMM作了一番调查。
HMM(Hidden Markov Model), 也称隐性马尔可夫模型,是一个概率模型,用来描述一个系统隐性状态的转移和隐性状态的表现概率。
系统的隐性状态指的就是一些外界不便观察(或观察不到)的状态, 比如在当前的例子里面, 系统的状态指的是大叔使用骰子的状态,即
{正常骰子, 作弊骰子1, 作弊骰子2,...}
隐性状态的表现也就是, 可以观察到的,由隐性状态产生的外在表现特点。这里就是说, 骰子掷出的点数.
{1,2,3,4,5,6}
HMM模型将会描述,系统隐性状态的转移概率。也就是大叔切换骰子的概率,下图是一个例子,这时候大叔切换骰子的可能性被描述得淋漓尽致。
很幸运的,这么复杂的概率转移图,竟然能用简单的矩阵表达, 其中a_{ij}代表的是从i状态到j状态发生的概率
当然同时也会有,隐性状态表现转移概率。也就是骰子出现各点的概率分布, (e.g. 作弊骰子1能有90%的机会掷到六,作弊骰子2有85%的机会掷到'小’). 给个图如下,
隐性状态的表现分布概率也可以用矩阵美丽地表示出来,
把这两个东西总结起来,就是整个HMM模型。
这个模型描述了隐性状态的转换的概率,同时也描述了每个状态外在表现的概率的分布。总之,HMM模型就能够描述扔骰子大叔作弊的频率(骰子更换的概率),和大叔用的骰子的概率分布。有了大叔的HMM模型,就能把大叔看透,让他完全在阳光下现形。
3. HMM能干什么!
总结起来HMM能处理三个问题,
3.1 解码(Decoding)
解码就是需要从一连串的骰子中,看出来哪一些骰子是用了作弊的骰子,哪些是用的正常的骰子。
比如上图中,给出一串骰子序列(3,6,1,2..)和大叔的HMM模型, 我们想要计算哪一些骰子的结果(隐性状态表现)可能对是哪种骰子的结果(隐性状态).
3.2学习(Learning)
学习就是,从一连串的骰子中,学习到大叔切换骰子的概率,当然也有这些骰子的点数的分布概率。这是HMM最为恐怖也最为复杂的招数!!
3.3 估计(Evaluation)
估计说的是,在我们已经知道了该大叔的HMM模型的情况下,估测某串骰子出现的可能性概率。比如说,在我们已经知道大叔的HMM模型的情况下,我们就能直接估测到大叔扔到10个6或者8个1的概率。
4. HMM是怎么做到的?
4.1 估计
估计是最容易的一招,在完全知道了大叔的HMM模型的情况下,我们很容易就能对其做出估计。
现在我们有了大叔的状态转移概率矩阵A,B就能够进行估计。比如我们想知道这位大叔下一局连续掷出10个6的概率是多少? 如下
这表示的是,在一开始隐性状态(s0)为1,也就是一开始拿着的是正常的骰子的情况下,这位大叔连续掷出10个6的概率。
现在问题难就难在,我们虽然知道了HMM的转换概率,和观察到的状态V{1:T}, 但是我们却不知道实际的隐性的状态变化。
好吧,我们不知道隐性状态的变化,那好吧,我们就先假设一个隐性状态序列, 假设大叔前5个用的是正常骰子, 后5个用的是作弊骰子1.
好了,那么我们可以计算,在这种隐性序列假设下掷出10个6的概率.
但是问题又出现了,刚才那个隐性状态序列是我假设的,而实际的序列我不知道,这该怎么办。好办,把所有可能出现的隐状态序列组合全都试一遍就可以了。于是,
4.2 解码(Decoding)
解码的过程就是在给出一串序列的情况下和已知HMM模型的情况下,找到最可能的隐性状态序列。
用数学公式表示就是, (V是Visible可见序列, w是隐性状态序列, A,B是HMM状态转移概率矩阵)
然后又可以使用估计(4.1)中的前向推导法,计算出最大的P(w(1:T), V(1:T)).
在完成前向推导法之后,再使用后向追踪法(Back Tracking),对求解出能令这个P(w(1:T), V(1:T))最大的隐性序列.这个算法被称为维特比算法(Viterbi Algorithm).
4.2.1 维特比算法找寻最有可能的隐性序列
这是动态规划算法的一种, 解法都是一样的, 找到递归方程后用前向推导求解.然后使用后向追踪法找到使得方程达到最优解的组合. 以下是一个计算骰子序列{1,2,6}最有可能的隐性序列组合.(初始状态为1=正常骰子,)