伍德伯里矩阵恒等式(Woodbury matrix identity)
宜言饮酒,与子偕老。琴瑟在御,莫不静好。
更多精彩内容请关注微信公众号 “优化与算法”
在数学(特别是线性代数)中,Woodbury矩阵恒等式是以Max A.Woodbury命名的,它 可以通过对原矩阵的逆进行秩k校正来计算某个矩阵的秩k校正的逆。这个公式的另一个名字是矩阵逆引理,谢尔曼-莫里森-伍德伯里(Sherman–Morrison–Woodbury formula)公式或只是伍德伯里公式。然而,在伍德伯里发现之前,这一等式出现在其他文献中。
1. 伍德伯里矩阵恒等式
其中\(A\)、\(U\)、\(C\) 和 \(V\)都表示适形尺寸的矩阵。具体来说,\(A\) 的大小为 \(n×n\),\(U\) 为 \(n×k\),\(C\) 为 \(k×k\),\(V\) 为 \(k×n\)。
2. 扩展
不失一般性,可用单位矩阵替换矩阵A和C:
这里\(\displaystyle U=A^{-1}X\), \(\displaystyle V=CY\)。
这个等式本身可以看作是两个简单等式的组合,即等式
和所谓的 push-through 等式
如果 \(p=q\) 和 \(U=V=I_p\) 是单位矩阵,那么
继续合并上述方程最右边的项,就可以得到一下恒等式:
此等式的另一个有用的形式是:
它有一个递归结构:
这种形式可用于微扰展开式,其中 \(B\) 是 \(A\) 的微扰。
4. 推广
二项式逆定理(Binomial Inverse Theorem)
如果 \(A\),\(U\),\(B\),\(V\) 分别是 \(p×p\),\(p×q\),\(q×q\),\(q×p\)的矩阵,那么:
前提是 \(A\) 和 \(B+BVA-1UB\) 是非奇异的。后者的非奇异性要求 \(B^{-1}\) 存在,因为它等于 \(B(I+VA=1ub)\),并且后者的秩不能超过 \(B\) 的秩。由于 \(B\) 是可逆的,所以在右手边的附加量逆的两边的两个 \(B\) 项可以被 \((B^{-1})^{-1}\) 替换,从而得到原始的Woodbury恒等式:
在某些情况下,\(A\) 是有可能是奇异的。
5. 延伸
公式可以通过检查 \(A+UCV\) 乘以伍德伯里恒等式右侧的所谓逆得到恒等式矩阵来证明:
\(\left(A+UCV\right)\left[A^{-1}-A^{-1}U\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}\right]\)
\(={}\left\{I-U\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}\right\}+\left\{UCVA^{-1}-UCVA^{-1}U\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}\right\}={}\)
\(\left\{I+UCVA^{-1}\right\}-\left\{U\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}+UCVA^{-1}U\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}\right\}=\)
\(+UCVA^{-1}-\left(U+UCVA^{-1}U\right)\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}=\)
\(+UCVA^{-1}-UC\left(C^{-1}+VA^{-1}U\right)\left(C^{-1}+VA^{-1}U\right)^{-1}VA^{-1}+UCVA^{-1}-UCVA^{-1}\left({A}+{B}\right)^{-1}\) \(=A^{-1}-A^{-1}(B^{-1}+A^{-1})^{-1}A^{-1}\)$