本博客已停止更新!请移步至louhc.github.io

「分块系列」数列分块入门1 解题报告

数列分块入门1

题意概括

区间加法,单点求值。

写在前面

数列分块是个好东西。。。我这里详细介绍一下分块算法,便于初学者的理解(我这个蒟蒻原来也是看不懂分块)。

分块简要介绍

先把数组分成几个块块,然后就可以对它们整体操作啦。

也就是说,把一个长度为的数组,拆分成一个个长度为sqrt(n)小块(当然,最后一块可能不完整,但是不用管),记录每个数所属的块;也就是这样——(方便起见,我们直接再开一个数组来记录所属分块,虽然本题中可以临时计算,但在有些题目中这一步显得尤为重要)

scanf( "%d", &n );
m = (int)sqrt(n);
for ( int i = 1; i <= n; ++i ) p[i] = ( i - 1 ) / m + 1;
for ( int i = 1; i <= n; ++i ) scanf( "%d", &a[i] );

然后,就可以瞎暴力辣!

实际上,所有的分块都是这样。把一个数列分成几块,然后对它们进行批量处理。一般来说,我们直接把块大小设为sqrt(n),但实际上,有时候我们要根据数据范围、具体复杂度来确定。

正题

当有修改时,对于完整的块,直接维护一个数组v记录整个块加过的数(每块共同的加数),不完整的就直接暴力在原数组a上直接加。询问时,直接输出原数组的值+所属块的共同加数即可。

代码

#include<cstdio>
#include<cmath>
using namespace std;
#define MAXN 50005

int n, a[MAXN], p[MAXN], m, v[300];
int opt, l, r, c;

void Add( int l, int r, int c ){
	if ( p[l] == p[r] ){//同属一分块时直接暴力即可
		for ( int i = l; i <= r; ++i ) a[i] += c;
		return;
	}
	for ( int i = l; p[i] == p[l]; ++i ) a[i] += c;//对于两边不完整(即使完整也不管,看做不完整)的分块,直接暴力即可
	for ( int i = r; p[i] == p[r]; --i ) a[i] += c;
	for ( int i = p[l] + 1; i <= p[r] - 1; ++i ) v[i] += c;//记录完整分块的共同加数
}

int main(){
	scanf( "%d", &n );
	m = (int)sqrt(n);
	for ( int i = 1; i <= n; ++i ) p[i] = ( i - 1 ) / m + 1;//记录所属分块
	for ( int i = 1; i <= n; ++i ) scanf( "%d", &a[i] );
	for ( int i = 1; i <= n; ++i ){
		scanf( "%d%d%d%d", &opt, &l, &r, &c );
		if ( opt == 0 ) Add( l, r, c );
		else printf( "%d\n", v[p[r]] + a[r] );//所属分块共同加数+原数组的值
	}
	return 0;
}

总结

分块代码可以比线段树简洁不少,虽然暴力但十分巧妙,而且十分灵活,适用于更多的题目。

但是如果时间复杂度要求较高,分块的O(n sqrt(n))就不能承受了,所以还是要学会乖乖打线段树QAQ。

数列分块系列目录

数列分块入门1 <-

数列分块入门2

数列分块入门3

数列分块入门4

数列分块入门5

数列分块入门6

数列分块入门7

数列分块入门8

数列分块入门9

蒲公英

公主的朋友

posted @ 2018-12-01 21:39  louhc  阅读(643)  评论(1编辑  收藏  举报