5-4Tensorboard可视化
在我们的炼丹过程中,如果能够使用丰富的图像来展示模型的结构,指标的变化,参数的分布,输入的形态等信息,无疑会提升我们对问题的洞察力,并增加许多炼丹的乐趣。
TensorBoard正是这样一个神奇的炼丹可视化辅助工具。它原是TensorFlow的小弟,但它也能够很好地和Pytorch进行配合。甚至在Pytorch中使用TensorBoard比TensorFlow中使用TensorBoard还要来的更加简单和自然。
本篇结构:
一,可视化模型结构
二,可视化指标变化
三,可视化参数分布
四,可视化原始图像
五,可视化人工绘图
六,torchkeras中的TensorBoard回调函数
1.Tensorboard可视化概述
Pytorch中利用TensorBoard可视化的大概过程如下:
首先在Pytorch中指定一个目录创建一个torch.utils.tensorboard.SummaryWriter日志写入器。
然后根据需要可视化的信息,利用日志写入器将相应信息日志写入我们指定的目录。
最后就可以传入日志目录作为参数启动TensorBoard,然后就可以在TensorBoard中愉快地看片了。
我们主要介绍Pytorch中利用TensorBoard进行如下方面信息的可视化的方法。
- 可视化模型结构: writer.add_graph
- 可视化指标变化: writer.add_scalar
- 可视化参数分布: writer.add_histogram
- 可视化原始图像: writer.add_image 或 writer.add_images
- 可视化人工绘图: writer.add_figure
这些方法尽管非常简单,但每次训练的时候都要调取调试还是非常麻烦的。
作者在torchkeras库中集成了一个torchkeras.callback.TensorBoard回调函数工具,
利用该工具配合torchkeras.LightModel可以用极少的代码在TensorBoard中实现绝大部分常用的可视化功能。
包括:
- 可视化模型结构
- 可视化指标变化
- 可视化参数分布
- 可视化超参调整
可以说非常方便哦。😋😋
import torch
import torchkeras
print("torch.__version__="+torch.__version__)
print("torchkeras.__version__="+torchkeras.__version__)
"""
torch.__version__=2.1.1+cu118
torchkeras.__version__=3.9.4
"""
2.可视化模型结构
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import torchkeras
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5)
self.dropout = nn.Dropout2d(p=0.1)
self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64, 32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32, 1)
def forward(self, x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
y = self.linear2(x)
return y
net = Net()
print(net)
"""
Net(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(dropout): Dropout2d(p=0.1, inplace=False)
(adaptive_pool): AdaptiveAvgPool2d(output_size=(1, 1))
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=64, out_features=32, bias=True)
(relu): ReLU()
(linear2): Linear(in_features=32, out_features=1, bias=True)
)
"""
from torchkeras import summary
summary(net, input_shape=(3, 32, 32));
"""
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Conv2d-1 [-1, 32, 30, 30] 896
MaxPool2d-2 [-1, 32, 15, 15] 0
Conv2d-3 [-1, 64, 11, 11] 51,264
MaxPool2d-4 [-1, 64, 5, 5] 0
Dropout2d-5 [-1, 64, 5, 5] 0
AdaptiveAvgPool2d-6 [-1, 64, 1, 1] 0
Flatten-7 [-1, 64] 0
Linear-8 [-1, 32] 2,080
ReLU-9 [-1, 32] 0
Linear-10 [-1, 1] 33
==========================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.011719
Forward/backward pass size (MB): 0.359627
Params size (MB): 0.207035
Estimated Total Size (MB): 0.578381
--------------------------------------------------------------------------
"""
writer = SummaryWriter('./data/tensorboard/')
writer.add_graph(net, input_to_model=torch.rand(1, 3, 32, 32))
writer.close()
%load_ext tensorboard
#%tensorboard --logdir ./data/tensorboard
from tensorboard import notebook
# 查看启动TensorBoard程序
notebook.list()
"""
No known TensorBoard instances running.
"""
# 启动
notebook.start('--logdir ./data/tensorboard')
#等价于在命令行中执行 tensorboard --logdir ./data/tensorboard
#可以在浏览器中打开 http://localhost:6006/ 查看
3.可视化指标变化
有时候在训练过程中,如果能够实时动态地查看loss和各种metric的变化曲线,那么无疑可以帮助我们更加直观地了解模型的训练情况。
注意,writer.add_scalar仅能对标量的值的变化进行可视化。因此它一般用于对loss和metric的变化进行可视化分析。
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
# f(x) = a * x ** 2 + b * x
x = torch.tensor(0.0, requires_grad=True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
optimizer = torch.optim.SGD(params=[x], lr=0.01)
def f(x):
result = a * torch.pow(x, 2) + b*x + c
return result
writer = SummaryWriter('./data/tensorboard/')
for i in range(500):
optimizer.zero_grad()
y = f(x)
y.backward()
optimizer.step()
writer.add_scalar('x', x.item(), i) # 日志中记录x在第step i的值
writer.add_scalar('y', y.item(), i) # 日志中记录y在第step i的值
writer.close()
print('y=', f(x).data, ';', 'x=', x.data)
"""
y= tensor(0.) ; x= tensor(1.0000)
"""
4.可视化参数分布
如果需要对模型的参数(一般非标量)在训练过程中的变化进行可视化,可以使用writer.add_histogram
它能够观测张量值分布的直方图随训练步骤的变化趋势
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
# 创建正态分布的张量模拟参数矩阵
def norm(mean, std):
t = std * torch.randn((100, 20)) + mean
return t
writer = SummaryWriter('./data/tensorboard/')
for step, mean in enumerate(range(-10, 10, 1)):
w = norm(mean, 1)
writer.add_histogram('w', w, step)
writer.flush()
writer.close()
5.可视化原始图像
如果我们做图像相关的任务,也可以将原始的图片在tensorboard中进行可视化展示
如果只写入一张图片信息,可以使用writer.add_image
如果要写入多张图片信息,可以使用writer.add_images
也可以用torchvision.utils.make_grid将多张图片拼成一张图片,然后用writer.add_image写入
注意,传入的是代表图片信息的Pytorch中的张量数据
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T, datasets
transform_img = T.Compose(
[
T.ToTensor()
]
)
def transform_label(x):
return torch.tensor([x]).float()
ds_train = datasets.ImageFolder('./dataset/cifar2/train/', transform=transform_img, target_transform=transform_label)
ds_val = datasets.ImageFolder('./dataset/cifar2/test/', transform=transform_img, target_transform=transform_label)
print(ds_train.class_to_idx)
dl_train = DataLoader(ds_train, batch_size=50, shuffle=True)
dl_val = DataLoader(ds_val, batch_size=50, shuffle=True)
images, labels = next(iter(dl_train))
# 仅查看一张图片
writer = SummaryWriter('./data/tensorboard/')
writer.add_image('imges[0]', images[0])
writer.close()
# 将多张图片拼接成一张图片,中间用黑色网格分割
writer = SummaryWriter('./data/tensorboard/')
# create grid of images
img_grid = torchvision.utils.make_grid(images)
writer.add_image('image_grid', img_grid)
writer.close()
# 将多张图片直接写入
writer = SummaryWriter('./data/tensorboard/')
writer.add_images('images', images, global_step=0)
writer.close()
"""
{'0_airplane': 0, '1_automobile': 1}
"""
6.可视化人工绘图
如果我们将matplotlib绘图的结果在tensorboard中展示吗,可以使用add_figure
注意,和writer.add_image不同的是,writer.add_figure需要传入matplotlib的figure对象
import torch
import torchvision
from torch import nn
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms as T, datasets
transform_img = T.Compose(
[T.ToTensor()])
def transform_label(x):
return torch.tensor([x]).float()
ds_train = datasets.ImageFolder("./dataset/cifar2/train/",
transform = transform_img,target_transform= transform_label)
ds_val = datasets.ImageFolder("./dataset/cifar2/test/",
transform = transform_img,target_transform= transform_label)
print(ds_train.class_to_idx)
dl_train = DataLoader(ds_train,batch_size = 50,shuffle = True)
dl_val = DataLoader(ds_val,batch_size = 50,shuffle = True)
images,labels = next(iter(dl_train))
"""
{'0_airplane': 0, '1_automobile': 1}
"""
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
import matplotlib.pyplot as plt
figure = plt.figure(figsize=(8, 8))
for i in range(9):
img, label = ds_train[i]
img = img.permute(1, 2, 0)
ax = plt.subplot(3, 3, i+1)
ax.imshow(img.numpy())
ax.set_title('label=%d' % label.item())
ax.set_xticks([])
ax.set_yticks([])
plt.show()
writer = SummaryWriter('./data/tensorboard/')
writer.add_figure('figure', figure, global_step=0)
writer.close()
7.torchkeras中的Tensorboard回调函数
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, TensorDataset
import torchkeras
# 准备数据
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
#number of samples
n_positive,n_negative = 4000,4000
#positive samples
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1])
theta_p = 2*np.pi*torch.rand([n_positive,1])
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)
Yp = torch.ones_like(r_p)
#negative samples
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1])
theta_n = 2*np.pi*torch.rand([n_negative,1])
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)
Yn = torch.zeros_like(r_n)
#concat positive and negative samples
X = torch.cat([Xp,Xn],axis = 0)
Y = torch.cat([Yp,Yn],axis = 0)
#visual samples
plt.figure(figsize = (6,6))
plt.scatter(Xp[:,0],Xp[:,1],c = "r")
plt.scatter(Xn[:,0],Xn[:,1],c = "g")
plt.legend(["positive","negative"]);
ds = TensorDataset(X, Y)
ds_train, ds_val = torch.utils.data.random_split(ds, [int(len(ds) * 0.7), len(ds) - int(len(ds) * 0.7)])
dl_train = DataLoader(ds_train, batch_size=16, shuffle=True)
dl_val = DataLoader(ds_val, batch_size=16)
for features, labels in dl_train:
break
print(features.shape)
print(labels.shape)
"""
torch.Size([16, 2])
torch.Size([16, 1])
"""
# 定义模型
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(2,16)
self.fc2 = nn.Linear(16,8)
self.fc3 = nn.Linear(8,1)
def forward(self,x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
y = self.fc3(x) #don't need nn.Sigmoid()
return y
from torchkeras.metrics import Accuracy
from torchkeras import KerasModel
net = Net()
loss_fn = nn.BCEWithLogitsLoss()
metric_dict = {'acc': Accuracy()}
lr = 0.0001
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
model = KerasModel(
net,
loss_fn=loss_fn,
metrics_dict=metric_dict,
optimizer=optimizer
)
from torchkeras import summary
summary(model, input_data=features);
"""
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Linear-1 [-1, 16] 48
Linear-2 [-1, 8] 136
Linear-3 [-1, 1] 9
==========================================================================
Total params: 193
Trainable params: 193
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.000076
Forward/backward pass size (MB): 0.000191
Params size (MB): 0.000736
Estimated Total Size (MB): 0.001003
--------------------------------------------------------------------------
"""
# 训练模型
from torchkeras.kerascallbacks import TensorBoardCallback
tb = TensorBoardCallback(
save_dir='./data/tensorboard/',
model_name='model',
log_weight=False,
log_weight_freq=5
)
model.fit(
train_data=dl_train,
val_data=dl_val,
epochs=100,
ckpt_path='checkpoint',
patience=10,
monitor='val_acc',
mode='max',
callbacks=[tb],
plot=True,
quiet=None,
cpu=True
)
# Tensorboard可视化监控
from tensorboard import notebook
notebook.start('--logdir ./data/tensorboard')
作者:lotuslaw
出处:https://www.cnblogs.com/lotuslaw/p/18106759
版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧