Loading

15-批次之间具有堆叠的LSTM

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

"""
堆叠LSTM时,需要将上层的输入形状向下继续传递,设置return_sequences=True参数
差异:
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))
"""
# 将数据截取成3个一组的监督学习格式
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i+look_back, 0])
    return np.array(dataX), np.array(dataY)

# 定义随机种子,以便重现结果
np.random.seed(42)

# 加载数据
df = pd.read_csv('../LSTM_Fly/airline-passengers.csv', usecols=[1], engine='python')
dataset = df.values
dataset = dataset.astype(np.float32)

# 缩放数据
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

# 分割1/3的数据作为测试
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[:train_size, :], dataset[train_size:, :]

# 预测数据步长为3, 三个预测1个
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)

# 重构输入数据格式[samples, timesteps, features]
trainX = np.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
testX = np.reshape(testX, (testX.shape[0], testX.shape[1], 1))

# 构建LSTM网络
batch_size = 1
model = Sequential()
# 堆叠两层网络,参数return_sequence=True表示将上层的输入形状向下继续传递
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True, return_sequences=True))
model.add(LSTM(4, batch_input_shape=(batch_size, look_back, 1), stateful=True))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam')
print(model.summary())

# 网络训练一个周期,循环训练100次
for i in range(100):
    model.fit(trainX, trainY, epochs=1, batch_size=batch_size, verbose=2, shuffle=False)
    # 每次训练完都重置网络状态
    model.reset_states()
    
# 对训练数据的Y进行预测
trainPredict = model.predict(trainX, batch_size=batch_size)

# 重置网络状态
model.reset_states()

# 对测试数的Y进行预测
testPredict = model.predict(testX, batch_size=batch_size)

# 对数据进行逆缩放
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

# 计算RMSE误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:, 0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:, 0]))
print('Test Score: %.2f RMSE' % (testScore))

# 构造一个和dataset格式相同的数组,供145行,dataset为总数据集,把预测的93行训练数据存进去
trainPredictPlot = np.empty_like(dataset)

# 用nan填充数据组
trainPredictPlot[:, :] = np.nan

# 将训练集预测的Y添加进数组,从第3位到93+3位,共93行
trainPredictPlot[look_back: len(trainPredict)+look_back, :] = trainPredict

# 构造一个和dataset格式相同的数组,共145行,把预测的后44行测试数据放进去
testPredictPlot = np.empty_like(dataset)
testPredictPlot[:, :] = np.nan

# 将测试集预测的Y添加进数组,从第94+4位到最后,共44行
testPredictPlot[len(trainPredict)+(look_back*2)+1: len(dataset)-1, :] = testPredict

# 画图
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()
posted @ 2023-02-09 00:08  lotuslaw  阅读(68)  评论(0编辑  收藏  举报