Loading

4-观测值缩放

import pandas as pd
import datetime
from sklearn.preprocessing import MinMaxScaler

# 加载数据
def parser(x):
    return datetime.datetime.strptime(x, '%Y/%m/%d')

ser = pd.read_csv('../LSTM系列/LSTM单变量1/data_set/shampoo-sales.csv', 
                header=0, parse_dates=[0], index_col=0, date_parser=parser).squeeze('columns')

X = ser.values
X = X.reshape(len(X), 1)  # MinMaxScaler函数需要矩阵作为输入,所以reshape数据为矩阵,因为是一维数组,所以生成的是n行1列的一个矩阵
scaler = MinMaxScaler(feature_range=(-1, 1))  # 定义缩放范围
scaler.fit(X)
scalerd_X = scaler.transform(X)
scalerd_series = pd.Series(scalerd_X[:, 0])
print(scalerd_series.head())

# 逆缩放
inverted_X = scaler.inverse_transform(scalerd_X)
inverted_series = pd.Series(inverted_X[:, 0])
print(inverted_series.head())
posted @ 2023-02-08 23:50  lotuslaw  阅读(13)  评论(0编辑  收藏  举报