3-时间序列转监督学习数据
import pandas as pd
import datetime
# 加载数据
def parser(x):
return datetime.datetime.strptime(x, '%Y/%m/%d')
ser = pd.read_csv('../LSTM系列/LSTM单变量1/data_set/shampoo-sales.csv',
header=0, parse_dates=[0], index_col=0, date_parser=parser).squeeze('columns')
def timeseries_to_supervised(data, lag=1):
df = pd.DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = pd.concat(columns, axis=1)
df.fillna(0, inplace=True)
return df
X = ser.values
supervised = timeseries_to_supervised(X, 1)
print(supervised.head())
作者:lotuslaw
出处:https://www.cnblogs.com/lotuslaw/p/17103769.html
版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧