排序:快速排序

时间复杂度 最理想 O(nlogn) 最差时间O(n^2)

像合并排序一样,快速排序也是基于分治模式的。下面是对一个典型子数组A[p..r]排序的分治过程的三个步骤:

分解:

数组A[p..r]]被划分成两个(可能空)子数组A[p..q-1]和A[q+1..r],使得A[p..q-1]中的每个元素都小于等于A(q),而且,小于等于A[q+1..r]中的元素。下标q也在这个划分过程中进行计算。

解决:

通过递归调用快速排序,对子数组A[p..q-1]和A[q+1..r]排序。

合并:

因为两个子数组是就地排序的,将它们的合并不需要操作:整个数组A[p..r]已排序

 

快速排序:

QUICKSORT(A,p,r)
if p<r
   then q=PARTITION(A,p,r)
        QUICKSORT(A,p,q-1)
        QUICKSORT(A,q+1,r)

数组划分:

PARTITION(A,p,r)
x=A[r]
i=p-1
for j=p to r-1
    do if A[j]<=x
          then i=i+1
               exchange A[i]<->A[j]
exchange A[i+1]<->A[r]
return i+1

 

具体可以看下这两图

 

可参照c代码:

int a[101],n;//定义全局变量,这两个变量需要在子函数中使用 

int partion(int left,int right)
{
    int i,j,t,temp; 
    if(left>right) 
       return; 
                                
    temp=a[left]; //temp中存的就是基准数 
    i=left; 
    j=right; 
    while(i!=j) 
    { 
                   //顺序很重要,要先从右边开始找 
                   while(a[j]>=temp && i<j) 
                            j--; 
                   //再找右边的 
                   while(a[i]<=temp && i<j) 
                            i++; 
                   //交换两个数在数组中的位置 
                   if(i<j) 
                   { 
                            t=a[i]; 
                            a[i]=a[j]; 
                            a[j]=t; 
                   } 
    } 
    //最终将基准数归位 
    a[left]=a[i]; 
    a[i]=temp; 
    return i;
}

void quicksort(int left,int right) 
{ 
    int i=partion(left,right);
    quicksort(left,i-1);//继续处理左边的,这里是一个递归的过程 
    quicksort(i+1,right);//继续处理右边的 ,这里是一个递归的过程 
}

 

选取枢纽元问题

1、糟糕的方法 

     通常的做法是选择数组中第一个元素作为枢纽元,如果输入是随机的,那么这是可以接受的。但是,如果输入序列是预排序的或者是反序的,那么依据这样的枢纽元进行划分则会出现相当糟糕的情况,因为可能所有的元素不是被划入S1,就是都被划入S2中。 

2、较好的方法 

    一个比较好的做法是随机选取枢纽元,一般来说,这种策略是比较妥当的。 

3、三数取取中值方法 

    例如,输入序列为  8, 1, 4, 9, 6, 3, 5, 2, 7, 0 ,它的左边元素为8,右边元素为0,中间位置|_left+right)/2_|上的元素为6,于是枢纽元为6.显然,使用三数中值分割法消除了预排序输入的坏情形,并且减少了快速排序大约5%(此为前人实验所得数据,无法具体证明)的运行时间。

 

参考:

旧博客原文

看算法:快速排序

 

posted @ 2018-08-23 02:15  _raindrop  阅读(115)  评论(0编辑  收藏  举报