二叉树的遍历和查找

前序遍历

若二叉树非空,则执行以下操作:

  1. 访问根结点;
  2. 先序遍历左子树;
  3. 先序遍历右子树

中序遍历

若二叉树非空,则执行以下操作:

  1. 中序遍历左子树;
  2. 访问根结点;
  3. 中序遍历右子树。

后序遍历

若二叉树非空,则执行以下操作:

  1. 后序遍历左子树;
  2. 后序遍历右子树;
  3. 访问根结点

实例说明

1
2
3
4
5
6

对于上面的二叉树而言,

  1. 前序遍历结果: 3 1 2 5 4 6
  2. 中序遍历结果: 1 2 3 4 5 6
  3. 后序遍历结果: 2 1 4 6 5 3

树的遍历代码实现

定义一个树结构

@ToString
class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;

  TreeNode(int x) {
    val = x;
  }
}

定义一个遍历方式的枚举

/**
 * 遍历的方向.
 */
enum Direct {
  /**
   * 中序
   */
  middle,
  /**
   * 前序
   */
  before,
  /**
   * 后序
   */
  after;
}

实现代码

/**
   * 遍历.
   */
  public void print(Direct direct) {
    StringBuffer stringBuffer = new StringBuffer();
    print(stringBuffer, this, direct, "ROOT:");
    System.out.println(stringBuffer.toString());
  }

  private void print(StringBuffer stringBuffer, TreeNode treeNode, Direct direct, String node) {
    if (treeNode != null) {

      if (direct == Direct.before) {
        stringBuffer.append(node + treeNode.val + "\n");
        print(stringBuffer, treeNode.left, direct, "L:");
        print(stringBuffer, treeNode.right, direct, "R:");
      } else if (direct == Direct.middle) {
        print(stringBuffer, treeNode.left, direct, "L:");
        stringBuffer.append(node + treeNode.val + "\n");
        print(stringBuffer, treeNode.right, direct, "R:");
      } else {
        print(stringBuffer, treeNode.left, direct, "L:");
        print(stringBuffer, treeNode.right, direct, "R:");
        stringBuffer.append(node + treeNode.val + "\n");
      }
    }
  }

二叉查询树实现了二分查找法

时间复杂度是Olog(n)到O(n),也就是说它最好的情况是Olog(n),当然运气不好,也就是你查询的是叶子节点,那就是O(n)了。

  /*
   * 二分查找,最优时间复杂度OLog(n).
   */
  private TreeNode search(TreeNode x, int key) {
    if (x == null)
      return x;

    int cmp = key - x.val;
    if (cmp < 0)
      return search(x.left, key);
    else if (cmp > 0)
      return search(x.right, key);
    else
      return x;
  }

  public TreeNode search(int key) {
    return search(this, key);
  }
}

对于树的知识还有很多,本文章主要介绍树的遍历和查找!

posted @   张占岭  阅读(1121)  评论(0编辑  收藏  举报
编辑推荐:
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
· C++代码改造为UTF-8编码问题的总结
阅读排行:
· 【.NET】调用本地 Deepseek 模型
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库
历史上的今天:
2017-05-31 Linux~Sh脚本一点自己的总结
2016-05-31 DotNetCore跨平台~Startup类的介绍
2012-05-31 架构,改善程序复用性的设计~第四讲 方法的重载真的用不到吗?
2011-05-31 项目中的通用消息类的实现
点击右上角即可分享
微信分享提示