redis数据结构和使用场景
- strings
- lists
- sets
- sort sets
- hashes
strings
- token
- session
- validateCode
- 分布锁
lists
sets
sort sets
hashes
bitmaps
hyperloglog
geo
主要使用场景对应的java源码
/**
* 代金卷例子.
* set结构保证了value的唯一性.
*/
@Test
public void setCoupon() {
final String COUPON_KEY = "coupon";
for (int i = 0; i < 100; i++) {
redisTemplate.opsForSet().add(COUPON_KEY, String.format("abc%s", i));
redisTemplate.opsForSet().add(COUPON_KEY, String.format("abc%s", i));
}
Assert.assertEquals(Long.valueOf(100), redisTemplate.opsForSet().size(COUPON_KEY));
redisTemplate.opsForSet().pop(COUPON_KEY);
Assert.assertEquals(Long.valueOf(99), redisTemplate.opsForSet().size(COUPON_KEY));
}
/**
* 用户消费top10.
* sortList结构做实时排名.
*/
@Test
public void sortListTop() {
final String CONSUMPTION_KEY = "consumption";
redisTemplate.opsForZSet().add(CONSUMPTION_KEY, "person1", 1);
redisTemplate.opsForZSet().add(CONSUMPTION_KEY, "person2", 2);
redisTemplate.opsForZSet().add(CONSUMPTION_KEY, "person3", 1);
for (Object o : redisTemplate.opsForZSet().rangeByScore(CONSUMPTION_KEY, 1, 1)) {
System.out.println(o);
}
}
@Test
public void distributeLock2() {
new Thread(() -> {
for (int i = 0; i < 5; i++) {
queue2();
}
}).start();
}
/**
* 地理位置测试.
*/
@Test
public void geoTest() {
BoundGeoOperations boundGeoOperations = redisTemplate.boundGeoOps("CHINA:CITY");
Point nanjing = new Point(118.803805, 32.060168);
boundGeoOperations.add(nanjing, "南京市");
Point beijing = new Point(116.397039, 39.9077);
boundGeoOperations.add(beijing, "北京市");
Point shanghai = new Point(120.52, 30.40);
boundGeoOperations.add(shanghai, "上海市");
//geodist:获取两个地理位置的距离
Distance distance = boundGeoOperations.distance("南京市", "北京市", Metrics.KILOMETERS);
System.out.println("南京市到北京市之间的距离是:" + distance.getValue() + "km");
Distance distance2 = boundGeoOperations.distance("南京市", "上海市", Metrics.KILOMETERS);
System.out.println("南京市到上海市之间的距离是:" + distance2.getValue() + "km");
//geohash:获取某个地理位置的geohash值
List<String> list = boundGeoOperations.hash("南京市");
System.out.println("南京市的geoHash = " + list.get(0));
//geopos:获取某个地理位置的坐标
List<Point> pointList = boundGeoOperations.position("南京市");
System.out.println("南京市的经纬度为 = " + pointList.get(0));
//georadius:根据给定地理位置坐标获取指定范围内的地理位置集合
//查询南京市1000KM范围内的城市
Circle within = new Circle(nanjing, 1000000);
//设置geo查询参数
RedisGeoCommands.GeoRadiusCommandArgs geoRadiusArgs = RedisGeoCommands.GeoRadiusCommandArgs.newGeoRadiusArgs();
//查询返回结果包括距离和坐标
geoRadiusArgs = geoRadiusArgs.includeCoordinates().includeDistance();
//按查询出的坐标距离中心坐标的距离进行排序
geoRadiusArgs.sortAscending();
//限制查询返回的数量
geoRadiusArgs.limit(2);
GeoResults<RedisGeoCommands.GeoLocation<String>> geoResults = boundGeoOperations.radius(within, geoRadiusArgs);
List<GeoResult<RedisGeoCommands.GeoLocation<String>>> geoResultList = geoResults.getContent();
for (GeoResult geoResult : geoResultList) {
System.out.println("geoRadius " + geoResult.getContent());
}
//georadiusbymember:根据给定地理位置获取指定范围内的地理位置集合
geoRadiusArgs.limit(1);
geoResults = boundGeoOperations.radius("南京市", new Distance(1000000), geoRadiusArgs);
geoResultList = geoResults.getContent();
for (GeoResult geoResult : geoResultList) {
System.out.println("geoRadiusByMember " + geoResult.getContent());
}
//删除位置信息,此命令不是geo提供的,是使用zrem命令删除的
boundGeoOperations.remove("南京市");
}
/**
* 查看用户在线状态情况 1在线,0离线.
*/
@Test
public void bitmapTest() {
final String onlineKey = "online:";
for (int i = 0; i < 100; i++) {
redisTemplate.opsForValue().setBit(onlineKey, i, i % 2 == 0);
}
for (int i = 0; i < 10; i++) {
System.out.println(i + "=" + redisTemplate.opsForValue().getBit(onlineKey, i));
}
System.out.println("online:" + redisConfig.bitCount(onlineKey));
}
/**
* 统一数组里数据唯一性.
* IP地址去重复.
*/
@Test
public void hyperLogLogTest() {
final String loglogKey = "loglog:";
String[] arr = new String[100];
for (int i = 0; i < 100; i++) {
arr[i] = "A" + new Random().nextInt(10) + 1;
}
redisTemplate.opsForHyperLogLog().add(loglogKey, arr);
System.out.println("loglog:" + redisTemplate.opsForHyperLogLog().size(loglogKey));
}