数据结构排序算法总结

第七章 排序

一、插入排序:

1、直接插入排序:

//直接插入排序时间复杂度:On*n;空间复杂度:O(1);稳定的(指相同元素相对位置不变)

void insertSort(int A[], int n){

         int i, j;

         for (i = 1; i <n; i++){         

                   int tmp = A[i];

                   for (j = i - 1; j >= 0 && tmp < A[j]; j--)                       

                            A[j + 1] = A[j];          

                   A[j + 1] = tmp;

         }

}

2、折半插入排序:

//折半插入排序  时间复杂度:On*n空间复杂度:O1稳定的

void insertSort(int A[], int n){

         int i, j,high,low,mid;

         for (i = 1; i < n; i++){

                   int tmp = A[i];

                   low = 0; high = i - 1;

                   while (low<=high)

                   {

                            mid = (low + high)/ 2;

                            if (A[mid] > tmp) high = mid - 1;

                            else low = mid + 1;

                   }

                   for (j = i - 1; j >high; j--)

                            A[j + 1] = A[j];

                   A[high+1] = tmp;

         }

}

3、希尔排序:

//希尔排序时间复杂度:On*n)空间复杂度:O1不稳定

void shellSort(int A[], int n){

         int i, j, dk;

         for (dk = n / 2; dk >= 1; dk = dk / 2){

                   for (i = dk; i < n; ++i){

                            int tmp = A[i];

                            for (j = i - dk; j >= 0 && tmp < A[j]; j -= dk)

                                     A[j + dk] = A[j];

                            A[j + dk] = tmp;

                   }

         }

}

总结:

         直接插入排序时间分为三部分:n次遍历、后移次数、比较次数,折半插入排序减少了比较次数,希尔排序可能减少了比较和后移次数;

 

 

 

 

 

 

 

 

 

 

 

二、交换排序

1、冒泡排序:

//冒泡排序  时间复杂度:On*n)  空间复杂度:O1稳定的

void bubbleSort(int A[], int n){

         int i, j;

         bool flag;

         for (i = 0; i < n - 1; i++){

                   flag = false;

                   for (j = n - 1; j > i; j--){

                            if (A[j] < A[j - 1]){

                                     swap(A[j-1],A[j]);

                                     flag = true;

                            }

                   }

                   if (!flag){

                            return;

                   }

         }

}

2、快速排序:

//快速排序时间复杂度:ON*log2 N)空间复杂度:O1不稳定

int partition_(int A[], int low, int high){

         int p = A[low];

         while (low<high)

         {

                   while (low<high&&A[high] > p) high--;

                   while (low<high&&A[low] < p) low++;

                   if (low < high){

                            swap(A[low], A[high]);

                            if (A[low] == p&&A[high] == p)

                                     low++;

                   }

         }

         A[low] = p;

         return low;

}

void quickSort(int A[], int low, int high){

         if (low < high){

                   int pivotpos = partition_(A, low, high);

                   quickSort(A,low,pivotpos -1);

                   quickSort(A,pivotpos+1,high);

         }

}

 

三、选择排序:

1、简单选择排序:

//简单选择排序  时间复杂度: On*n)空间复杂度:O1不稳定的

void selectSort(int A[], int n){

         int i, j, min;

         for (i = 0; i < n-1; i++){

                   min = i;

                   for (j = i + 1; j < n; j++)

                            if (A[j]<A[min]) min = j;           

                   if (min != i) swap(A[i], A[min]);

         }

}

2、堆排序:

//堆排序  时间复杂度:ON*log2N)空间复杂度:O1不稳定的

 

void adjustDown(int A[], int k, int len){

         int tmp = A[k];

         for (int i = 2 * k + 1; i < len; i = 2 * i + 1){

                   if (i<len - 1 && A[i] < A[i + 1])

                            i++;

                   if (tmp >= A[i])  break;

                   if (A[i] > tmp){

                            A[k] = A[i];

                            k = i;

                   }

         }

         A[k] = tmp;

}

 

 

 

void buildMaxHead(int A[], int len){

         int i;

         for (i = len / 2-1; i >=0; i--)

                   adjustDown(A,i,len);        

}

 

void heapSort(int A[], int len){

         buildMaxHead(A,len);    

         for (int i = len - 1; i > 0; i--){

                   swap(A[i],A[0]);

                   adjustDown(A,0,i);

         }

}

//向上调整

void adjustUp(int A[], int k){

         int tmp = A[k];

         int i = k / 2;

         while (i >= 0 && tmp > A[i]){

                   A[k] = A[i];

                   k = i;

                   i = i / 2;

         }

         A[k] = tmp;

}

四、二路归并排序:

//二路归并排序时间复杂度ON*log2N空间复杂度O(n)  稳定的

int n = 10;

int* B = (int*)malloc((n + 1)*sizeof(int));

void merge(int A[], int low, int mid, int high){

         int i, j, k;

         for (k = low; k <= high; k++)

                   B[k] = A[k];

         for (i = low, j = mid + 1, k = i; i <= mid&&j <= high;k++){

                   if (B[i] <= B[j])

                            A[k] = B[i++];

                   else

                            A[k] = B[j++];

         }

         while (i <= mid) A[k++] = B[i++];

         while (j <= high) A[k++] = B[j++];   

}

void mergeSort(int A[],int low,int high){

         if (low < high){

                   int mid = (low + high) / 2;

                   mergeSort(A,low,mid);

                   mergeSort(A,mid+1,high);

                   merge(A, low, mid, high);

         }

}

 

五、总结记忆:

 

posted on 2017-09-14 12:57  最快的方法就是最慢  阅读(1772)  评论(0编辑  收藏  举报

导航