hive2.3.8&hadoop2.10.1兼容测试
环境情况
namenode.test.local | centos7.9 jdk1.8_221 | 4c8g200G |
---|---|---|
datanode1-3.test.local | centos7.9 jdk1.8_221 | 12c16g200G |
hive.test.local | centos7.9 jdk1.8_221 mysql5.7.32 | 8c8g200G |
配置文件
/etc/profile
...
export MAVEN_HOME=/opt/maven
export JAVA_HOME=/opt/jdk
export PATH=$PATH:$JAVA_HOME/bin:/opt/hadoop/bin:/opt/hadoop/sbin:/opt/hive/bin:$MAVEN_HOME/bin
hadoop-env.sh
export JAVA_HOME=/opt/jdk
export HADOOP_HOME=/opt/hadoop
core-site.xml
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://namenode.test.local:8020</value>
</property>
<property>
<name>io.file.buffer.size</name>
<value>131072</value>
</property>
<property>
<name>hadoop.proxyuser.root.groups</name>
<value>*</value>
</property>
<property>
<name>hadoop.proxyuser.root.hosts</name>
<value>*</value>
</property>
</configuration>
hdfs-site.xml
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>/dfs/nn</value>
</property>
<property>
<name>dfs.namenode.handler.count</name>
<value>100</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/dfs/dn</value>
</property>
<property>
<name>dfs.blocksize</name>
<value>134217728</value>
</property>
</configuration>
yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>namenode.test.local</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
mapred-site.xml
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
hive-env.sh
export JAVA_HOME=/opt/jdk
export HADOOP_HOME=/opt/hadoop
export HIVE_HOME=/opt/hive
export HADOOP_HEAPSIZE=2048
hive-site.xml
<configuration>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hive@123</value>
</property>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://hive.test.local:3306/hive?createDatabaseIfNotExist=true&useSSL=false</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>hive.metastore.uris</name>
<value>thrift://hive.test.local:9083</value>
</property>
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
</property>
<property>
<name>hive.exec.scratchdir</name>
<value>/tmp/hive</value>
</property>
<property>
<name>hive.exec.local.scratchdir</name>
<value>/tmp/hive/user</value>
</property>
<property>
<name>hive.querylog.location</name>
<value>/tmp/hive/querylog</value>
</property>
</configuration>
启动服务
hadoop
[root@namenode ~]# start-all.sh
This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh
Starting namenodes on [namenode.test.local]
namenode.test.local: starting namenode, logging to /opt/hadoop/logs/hadoop-root-namenode-namenode.test.local.out
datanode2.test.local: starting datanode, logging to /opt/hadoop/logs/hadoop-root-datanode-datanode2.test.local.out
datanode1.test.local: starting datanode, logging to /opt/hadoop/logs/hadoop-root-datanode-datanode1.test.local.out
datanode3.test.local: starting datanode, logging to /opt/hadoop/logs/hadoop-root-datanode-datanode3.test.local.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /opt/hadoop/logs/hadoop-root-secondarynamenode-namenode.test.local.out
starting yarn daemons
starting resourcemanager, logging to /opt/hadoop/logs/yarn-root-resourcemanager-namenode.test.local.out
datanode1.test.local: starting nodemanager, logging to /opt/hadoop/logs/yarn-root-nodemanager-datanode1.test.local.out
datanode3.test.local: starting nodemanager, logging to /opt/hadoop/logs/yarn-root-nodemanager-datanode3.test.local.out
datanode2.test.local: starting nodemanager, logging to /opt/hadoop/logs/yarn-root-nodemanager-datanode2.test.local.out
[root@namenode ~]#
hive
# 启动hive metastore
[root@hive ~]# hive --service metastore
2021-02-22 16:12:38: Starting Hive Metastore Server
# 启动hiveserver2
[root@hive ~]# hiveserver2
which: no hbase in (/usr/local/jdk/bin:/opt/hadoop/bin:/opt/hadoop/sbin:/opt/hbase/bin:/opt/hive/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/opt/jdk/bin:/opt/hadoop/bin:/opt/hadoop/sbin:/opt/hive/bin:/opt/maven/bin:/root/bin)
2021-02-22 16:59:11: Starting HiveServer2
测试工具
hive-testbench
hive-testbench
A testbench for experimenting with Apache Hive at any data scale.
Overview
The hive-testbench is a data generator and set of queries that lets you experiment with Apache Hive at scale. The testbench allows you to experience base Hive performance on large datasets, and gives an easy way to see the impact of Hive tuning parameters and advanced settings.
Prerequisites
You will need:
Hadoop 2.2 or later cluster or Sandbox.
Apache Hive.
Between 15 minutes and 2 days to generate data (depending on the Scale Factor you choose and available hardware).
If you plan to generate 1TB or more of data, using Apache Hive 13+ to generate the data is STRONGLY suggested.
Install and Setup
All of these steps should be carried out on your Hadoop cluster.
Step 1: Prepare your environment.
In addition to Hadoop and Hive, before you begin ensure gcc is installed and available on your system path. If you system does not have it, install it using yum or apt-get.
Step 2: Decide which test suite(s) you want to use.
hive-testbench comes with data generators and sample queries based on both the TPC-DS and TPC-H benchmarks. You can choose to use either or both of these benchmarks for experiementation. More information about these benchmarks can be found at the Transaction Processing Council homepage.
Step 3: Compile and package the appropriate data generator.
For TPC-DS, ./tpcds-build.sh downloads, compiles and packages the TPC-DS data generator. For TPC-H, ./tpch-build.sh downloads, compiles and packages the TPC-H data generator.
Step 4: Decide how much data you want to generate.
You need to decide on a "Scale Factor" which represents how much data you will generate. Scale Factor roughly translates to gigabytes, so a Scale Factor of 100 is about 100 gigabytes and one terabyte is Scale Factor 1000. Decide how much data you want and keep it in mind for the next step. If you have a cluster of 4-10 nodes or just want to experiment at a smaller scale, scale 1000 (1 TB) of data is a good starting point. If you have a large cluster, you may want to choose Scale 10000 (10 TB) or more. The notion of scale factor is similar between TPC-DS and TPC-H.
If you want to generate a large amount of data, you should use Hive 13 or later. Hive 13 introduced an optimization that allows far more scalable data partitioning. Hive 12 and lower will likely crash if you generate more than a few hundred GB of data and tuning around the problem is difficult. You can generate text or RCFile data in Hive 13 and use it in multiple versions of Hive.
Step 5: Generate and load the data.
The scripts tpcds-setup.sh and tpch-setup.sh generate and load data for TPC-DS and TPC-H, respectively. General usage is tpcds-setup.sh scale_factor [directory] or tpch-setup.sh scale_factor [directory]
Some examples:
Build 1 TB of TPC-DS data: ./tpcds-setup.sh 1000
Build 1 TB of TPC-H data: ./tpch-setup.sh 1000
Build 100 TB of TPC-DS data: ./tpcds-setup.sh 100000
Build 30 TB of text formatted TPC-DS data: FORMAT=textfile ./tpcds-setup 30000
Build 30 TB of RCFile formatted TPC-DS data: FORMAT=rcfile ./tpcds-setup 30000
Also check other parameters in setup scripts important one is BUCKET_DATA.
Step 6: Run queries.
More than 50 sample TPC-DS queries and all TPC-H queries are included for you to try. You can use hive, beeline or the SQL tool of your choice. The testbench also includes a set of suggested settings.
This example assumes you have generated 1 TB of TPC-DS data during Step 5:
cd sample-queries-tpcds
hive -i testbench.settings
hive> use tpcds_bin_partitioned_orc_1000;
hive> source query55.sql;
Note that the database is named based on the Data Scale chosen in step 3. At Data Scale 10000, your database will be named tpcds_bin_partitioned_orc_10000. At Data Scale 1000 it would be named tpch_flat_orc_1000. You can always show databases to get a list of available databases.
Similarly, if you generated 1 TB of TPC-H data during Step 5:
cd sample-queries-tpch
hive -i testbench.settings
hive> use tpch_flat_orc_1000;
hive> source tpch_query1.sql;
测试流程
数据生成
# 修改hiveserver2地址
[root@namenode hive-testbench-hdp3]# grep beeline tpcds-setup.sh
#HIVE="beeline -n hive -u 'jdbc:hive2://localhost:2181/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2?tez.queue.name=default' "
HIVE="beeline -n root -u 'jdbc:hive2://hive.test.local:10000' "
# 生成10G测试数据
[root@namenode hive-testbench-hdp3]# ./tpcds-setup.sh 10
ls: `/tmp/tpcds-generate/10': No such file or directory
Generating data at scale factor 10.
21/02/22 16:23:08 INFO Configuration.deprecation: mapred.task.timeout is deprecated. Instead, use mapreduce.task.timeout
21/02/22 16:23:08 INFO client.RMProxy: Connecting to ResourceManager at namenode.test.local/192.168.198.35:8032
21/02/22 16:23:08 INFO input.FileInputFormat: Total input files to process : 1
21/02/22 16:23:08 INFO mapreduce.JobSubmitter: number of splits:10
21/02/22 16:23:09 INFO Configuration.deprecation: io.sort.mb is deprecated. Instead, use mapreduce.task.io.sort.mb
21/02/22 16:23:09 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1613981536344_0001
21/02/22 16:23:09 INFO conf.Configuration: resource-types.xml not found
21/02/22 16:23:09 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
21/02/22 16:23:09 INFO resource.ResourceUtils: Adding resource type - name = memory-mb, units = Mi, type = COUNTABLE
21/02/22 16:23:09 INFO resource.ResourceUtils: Adding resource type - name = vcores, units = , type = COUNTABLE
21/02/22 16:23:09 INFO impl.YarnClientImpl: Submitted application application_1613981536344_0001
21/02/22 16:23:09 INFO mapreduce.Job: The url to track the job: http://namenode.test.local:8088/proxy/application_1613981536344_0001/
21/02/22 16:23:09 INFO mapreduce.Job: Running job: job_1613981536344_0001
21/02/22 16:23:16 INFO mapreduce.Job: Job job_1613981536344_0001 running in uber mode : false
21/02/22 16:23:16 INFO mapreduce.Job: map 0% reduce 0%
21/02/22 16:25:30 INFO mapreduce.Job: map 10% reduce 0%
21/02/22 16:25:34 INFO mapreduce.Job: map 20% reduce 0%
21/02/22 16:25:50 INFO mapreduce.Job: map 30% reduce 0%
21/02/22 16:25:57 INFO mapreduce.Job: map 40% reduce 0%
21/02/22 16:26:01 INFO mapreduce.Job: map 60% reduce 0%
21/02/22 16:26:02 INFO mapreduce.Job: map 70% reduce 0%
21/02/22 16:26:04 INFO mapreduce.Job: map 90% reduce 0%
21/02/22 16:29:28 INFO mapreduce.Job: map 100% reduce 0%
21/02/22 16:29:28 INFO mapreduce.Job: Job job_1613981536344_0001 completed successfully
21/02/22 16:29:28 INFO mapreduce.Job: Counters: 31
File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=2104820
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=4519
HDFS: Number of bytes written=12194709083
HDFS: Number of read operations=50
HDFS: Number of large read operations=0
HDFS: Number of write operations=89
Job Counters
Killed map tasks=3
Launched map tasks=13
Other local map tasks=13
Total time spent by all maps in occupied slots (ms)=1967554
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=1967554
Total vcore-milliseconds taken by all map tasks=1967554
Total megabyte-milliseconds taken by all map tasks=2014775296
Map-Reduce Framework
Map input records=10
Map output records=0
Input split bytes=1200
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=22683
CPU time spent (ms)=496160
Physical memory (bytes) snapshot=2480996352
Virtual memory (bytes) snapshot=21693628416
Total committed heap usage (bytes)=1499987968
File Input Format Counters
Bytes Read=3319
File Output Format Counters
Bytes Written=0
TPC-DS text data generation complete.
... ...
Optimizing table catalog_page (16/24).
Optimizing table web_site (17/24).
Optimizing table store_sales (18/24).
Optimizing table store_returns (19/24).
Optimizing table web_sales (20/24).
Optimizing table web_returns (21/24).
Optimizing table catalog_sales (22/24).
Optimizing table catalog_returns (23/24).
Optimizing table inventory (24/24).
Loading constraints
0: jdbc:hive2://hive.test.local:10000> -- set hivevar:DB=tpcds_bin_partitioned_orc_10000
0: jdbc:hive2://hive.test.local:10000>
0: jdbc:hive2://hive.test.local:10000> alter table customer_address add constraint ${DB}_pk_ca primary key (ca_address_sk) disable novalidate rely;
Data loaded into database tpcds_bin_partitioned_orc_10.
# 查看数据大小
[root@namenode hive-testbench-hdp3]# hadoop fs -du -h /tmp
42.8 M /tmp/hadoop-yarn
0 /tmp/hive
11.4 G /tmp/tpcds-generate
查询测试
[root@namenode hive-testbench-hdp3]# cd sample-queries-tpcds/
[root@namenode sample-queries-tpcds]# hive
which: no hbase in (/usr/local/jdk/bin:/opt/hadoop/bin:/opt/hadoop/sbin:/opt/hbase/bin:/opt/hive/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/root/bin:/opt/jdk/bin:/opt/hadoop/bin:/opt/hadoop/sbin:/opt/hive/bin:/opt/jdk/bin:/opt/hadoop/bin:/opt/hadoop/sbin:/opt/hive/bin:/opt/maven/bin)
Logging initialized using configuration in file:/opt/hive/conf/hive-log4j2.properties Async: true
Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
hive> show databases;
OK
default
tpcds_bin_partitioned_orc_10
tpcds_text_10
Time taken: 0.984 seconds, Fetched: 3 row(s)
hive> use tpcds_bin_partitioned_orc_10;
OK
Time taken: 0.028 seconds
hive> source query55.sql;
No Stats for tpcds_bin_partitioned_orc_10@date_dim, Columns: d_moy, d_date_sk, d_year
No Stats for tpcds_bin_partitioned_orc_10@store_sales, Columns: ss_ext_sales_price, ss_item_sk
No Stats for tpcds_bin_partitioned_orc_10@item, Columns: i_manager_id, i_brand, i_brand_id, i_item_sk
WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = root_20210222173950_896147ed-09f8-45dc-98be-01607866a9b8
Total jobs = 2
2021-02-22 17:40:02 Starting to launch local task to process map join; maximum memory = 477626368
2021-02-22 17:40:04 Dump the side-table for tag: 1 with group count: 1819 into file: file:/tmp/hive/tmp/user/2caa1bb0-be01-485c-a16d-0b416e35dec9/hive_2021-02-22_17-39-50_274_1841607821466582182-1/-local-10007/HashTable-Stage-3/MapJoin-mapfile01--.hashtable
2021-02-22 17:40:04 Uploaded 1 File to: file:/tmp/hive/tmp/user/2caa1bb0-be01-485c-a16d-0b416e35dec9/hive_2021-02-22_17-39-50_274_1841607821466582182-1/-local-10007/HashTable-Stage-3/MapJoin-mapfile01--.hashtable (139826 bytes)
2021-02-22 17:40:04 Dump the side-table for tag: 0 with group count: 30 into file: file:/tmp/hive/tmp/user/2caa1bb0-be01-485c-a16d-0b416e35dec9/hive_2021-02-22_17-39-50_274_1841607821466582182-1/-local-10007/HashTable-Stage-3/MapJoin-mapfile10--.hashtable
2021-02-22 17:40:04 Uploaded 1 File to: file:/tmp/hive/tmp/user/2caa1bb0-be01-485c-a16d-0b416e35dec9/hive_2021-02-22_17-39-50_274_1841607821466582182-1/-local-10007/HashTable-Stage-3/MapJoin-mapfile10--.hashtable (893 bytes)
2021-02-22 17:40:04 End of local task; Time Taken: 1.829 sec.
Execution completed successfully
MapredLocal task succeeded
Launching Job 1 out of 2
Number of reduce tasks not specified. Estimated from input data size: 5
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1613981536344_0032, Tracking URL = http://namenode.test.local:8088/proxy/application_1613981536344_0032/
Kill Command = /opt/hadoop/bin/hadoop job -kill job_1613981536344_0032
Hadoop job information for Stage-3: number of mappers: 5; number of reducers: 5
2021-02-22 17:40:15,479 Stage-3 map = 0%, reduce = 0%
2021-02-22 17:40:24,777 Stage-3 map = 20%, reduce = 0%, Cumulative CPU 12.25 sec
2021-02-22 17:40:32,004 Stage-3 map = 42%, reduce = 0%, Cumulative CPU 133.69 sec
2021-02-22 17:40:38,170 Stage-3 map = 56%, reduce = 0%, Cumulative CPU 193.37 sec
2021-02-22 17:40:41,263 Stage-3 map = 56%, reduce = 1%, Cumulative CPU 193.96 sec
2021-02-22 17:40:42,288 Stage-3 map = 56%, reduce = 4%, Cumulative CPU 195.27 sec
2021-02-22 17:40:43,317 Stage-3 map = 81%, reduce = 7%, Cumulative CPU 232.46 sec
2021-02-22 17:40:44,340 Stage-3 map = 92%, reduce = 7%, Cumulative CPU 246.32 sec
2021-02-22 17:40:46,382 Stage-3 map = 100%, reduce = 7%, Cumulative CPU 252.23 sec
2021-02-22 17:40:47,413 Stage-3 map = 100%, reduce = 37%, Cumulative CPU 256.92 sec
2021-02-22 17:40:48,433 Stage-3 map = 100%, reduce = 100%, Cumulative CPU 266.17 sec
MapReduce Total cumulative CPU time: 4 minutes 26 seconds 170 msec
Ended Job = job_1613981536344_0032
Launching Job 2 out of 2
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1613981536344_0033, Tracking URL = http://namenode.test.local:8088/proxy/application_1613981536344_0033/
Kill Command = /opt/hadoop/bin/hadoop job -kill job_1613981536344_0033
Hadoop job information for Stage-4: number of mappers: 1; number of reducers: 1
2021-02-22 17:40:58,959 Stage-4 map = 0%, reduce = 0%
2021-02-22 17:41:04,074 Stage-4 map = 100%, reduce = 0%, Cumulative CPU 2.24 sec
2021-02-22 17:41:10,210 Stage-4 map = 100%, reduce = 100%, Cumulative CPU 5.1 sec
MapReduce Total cumulative CPU time: 5 seconds 100 msec
Ended Job = job_1613981536344_0033
MapReduce Jobs Launched:
Stage-Stage-3: Map: 5 Reduce: 5 Cumulative CPU: 266.17 sec HDFS Read: 181322100 HDFS Write: 30670 SUCCESS
Stage-Stage-4: Map: 1 Reduce: 1 Cumulative CPU: 5.1 sec HDFS Read: 38479 HDFS Write: 8225 SUCCESS
Total MapReduce CPU Time Spent: 4 minutes 31 seconds 270 msec
OK
5004001 edu packscholar #1 985090.91
4003001 exportiedu pack #1 749796.53
2003001 exportiimporto #1 740017.41
3003001 exportiexporti #1 715635.78
3001001 amalgexporti #1 648516.60
4004001 edu packedu pack #1 647306.31
1001001 amalgamalg #1 615682.83
5001001 amalgscholar #1 608734.34
2004001 edu packimporto #1 602920.44
4001001 amalgedu pack #1 593830.28
1004001 edu packamalg #1 538690.18
2001001 amalgimporto #1 509721.01
5003001 exportischolar #1 509119.63
1002001 importoamalg #1 432381.01
2002001 importoimporto #1 430232.14
3004001 edu packexporti #1 418713.13
1003001 exportiamalg #1 326178.15
1004002 edu packamalg #2 318065.66
5003002 exportischolar #2 317527.51
3002001 importoexporti #1 294773.87
4003002 exportiedu pack #2 288009.92
5001002 amalgscholar #2 276310.99
1003002 exportiamalg #2 276127.56
4002001 importoedu pack #1 262465.67
2004002 edu packimporto #2 259237.10
5002001 importoscholar #1 246532.02
1001002 amalgamalg #2 238708.14
5002002 importoscholar #2 237393.25
4001002 amalgedu pack #2 216028.56
4002002 importoedu pack #2 212750.27
1002002 importoamalg #2 207273.90
2002002 importoimporto #2 196153.44
4004002 edu packedu pack #2 196150.02
2003002 exportiimporto #2 171982.44
2001002 amalgimporto #2 165245.23
8006009 corpnameless #9 149362.97
3002002 importoexporti #2 145204.09
7015003 scholarnameless #3 133873.18
7013009 exportinameless #9 130139.79
9015003 scholarunivamalg #3 128759.80
7003008 exportibrand #8 124947.61
3001002 amalgexporti #2 117106.72
8005003 scholarnameless #3 109752.72
6012003 importobrand #3 109332.83
7004006 edu packbrand #6 105481.30
6003003 exporticorp #3 104250.25
9010005 univunivamalg #5 103386.73
7007010 brandbrand #10 102883.40
8009001 maxinameless #1 101379.46
9003002 exportimaxi #2 99345.17
8015001 scholarmaxi #1 97796.94
9014002 edu packunivamalg #2 96701.89
3003002 exportiexporti #2 93401.96
8009008 maxinameless #8 91274.89
6005007 scholarcorp #7 91083.40
9016003 corpunivamalg #3 90934.97
9005009 scholarmaxi #9 90709.21
5004002 edu packscholar #2 90128.22
8007003 brandnameless #3 89640.84
10009013 maxiunivamalg #13 88603.18
10001014 amalgunivamalg #14 83967.58
10014001 edu packamalgamalg #1 83264.25
6004007 edu packcorp #7 82821.56
8014004 edu packmaxi #4 82562.89
6003005 exporticorp #5 82151.42
8004007 edu packnameless #7 81992.68
8013003 exportimaxi #3 81738.37
8005005 scholarnameless #5 78781.89
10009011 maxiunivamalg #11 78542.32
6010003 univbrand #3 77660.72
9004002 edu packmaxi #2 77422.65
6011001 amalgbrand #1 75666.07
10012001 importoamalgamalg #1 75611.21
8006006 corpnameless #6 73473.83
10007014 brandunivamalg #14 73376.85
8001006 amalgnameless #6 73374.93
9012002 importounivamalg #2 73261.59
6005001 scholarcorp #1 73175.36
9012008 importounivamalg #8 72132.85
9007003 brandmaxi #3 71743.79
8010005 univmaxi #5 71661.03
7001001 amalgbrand #1 71610.31
6005002 scholarcorp #2 70764.54
9012005 importounivamalg #5 70397.87
9001009 amalgmaxi #9 70248.11
7002006 importobrand #6 70169.63
7016010 corpnameless #10 69625.40
7014004 edu packnameless #4 69423.25
6008003 namelesscorp #3 68945.08
8004001 edu packnameless #1 68807.75
9016009 corpunivamalg #9 68247.42
7010001 univnameless #1 68041.95
6008006 namelesscorp #6 67879.37
6007006 brandcorp #6 67440.24
10014016 edu packamalgamalg #16 67194.80
7001003 amalgbrand #3 66805.69
7001002 amalgbrand #2 66001.82
10011008 amalgamalgamalg #8 65685.86
8004003 edu packnameless #3 65608.69
10011011 amalgamalgamalg #11 65344.63
Time taken: 80.995 seconds, Fetched: 100 row(s)
hive>
总结
基本上没出现过报错的情况,后续将测试spark作为hive计算引擎。