机器学习11 12.朴素贝叶斯-垃圾邮件分类

1. 读邮件数据集文件,提取邮件本身与标签。

列表

numpy数组代码:

import csv
file_path =r"SMSSpamCollection"
sms= open(file_path,'r',encoding='utf-8')
data=csv.reader(sms,delimiter = "\t")
for i in data:
    print(i)
sms.close()

 

 

 

2.邮件预处理

  • 邮件分句
  • 名子分词
  • 去掉过短的单词
  • 词性还原
  • 连接成字符串

 

  •  传统方法来实现
  •  nltk库的安装与使用

pip install nltk

import nltk

nltk.download()     # sever地址改成 http://www.nltk.org/nltk_data/

https://github.com/nltk/nltk_data下载gh-pages分支,里面的Packages就是我们要的资源。

将Packages文件夹改名为nltk_data。

网盘链接:https://pan.baidu.com/s/1iJGCrz4fW3uYpuquB5jbew    提取码:o5ea

放在用户目录。

----------------------------------

安装完成,通过下述命令可查看nltk版本:

import nltk
print nltk.__doc__

 

2.1 nltk库 分词

nltk.sent_tokenize(text) #对文本按照句子进行分割

nltk.word_tokenize(sent) #对句子进行分词

2.2 punkt 停用词

from nltk.corpus import stopwords

stops=stopwords.words('english')

*如果提示需要下载punkt

nltk.download(‘punkt’)

或 下载punkt.zip

https://pan.baidu.com/s/1OwLB0O8fBWkdLx8VJ-9uNQ  密码:mema

复制到对应的失败的目录C:\Users\Administrator\AppData\Roaming\nltk_data\tokenizers并解压。

 

2.3 NLTK 词性标注

nltk.pos_tag(tokens)

2.4 Lemmatisation(词性还原)

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmatizer.lemmatize('leaves') #缺省名词

lemmatizer.lemmatize('best',pos='a')

lemmatizer.lemmatize('made',pos='v')

一般先要分词、词性标注,再按词性做词性还原。

2.5 编写预处理函数

def preprocessing(text):

sms_data.append(preprocessing(line[1])) #对每封邮件做预处理

 import nltk

nltk.download()
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import csv
 
# 邮件预处理
def preprocessing(text):
    # 分词
    tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]
    # 停用词
 
    stops = stopwords.words("english")  # 构建停用器
    tokens = [token for token in tokens if token not in stops]
    # 词性标注
    nltk.pos_tag(tokens)
    # 词性还原Lemmatisation
    lemmatizer = WordNetLemmatizer()  # 定义还原对象
    tokens = [lemmatizer.lemmatize(token, pos='n'for token in tokens]  # 名词还原
    tokens = [lemmatizer.lemmatize(token, pos='v'for token in tokens]  # 动词还原
    tokens = [lemmatizer.lemmatize(token, pos='a'for token in tokens]  # 形容词还原
    return tokens  # 返回处理结果
 
sms = open("data/SMSSpamCollection"'r', encoding='utf-8')  # 数据读取
sms_data = []  # 邮件内容
sms_label = []  # 邮件标题
csv_reader = csv.reader(sms, delimiter='\t')
# 对每封邮件进行预处理
for line in csv_reader:
    sms_label.append(line[0])  # 获取标题
    sms_data.append(preprocessing(line[1]))  # 获取处理后邮件数据
sms.close()  # 关闭读取流
print("lable内容:\n", sms_label)  # 标题
print("data内容:")  # 处理后的邮件内容
for in sms_data:
    print(i)

 

posted @ 2020-05-20 15:28  longlog  阅读(171)  评论(0编辑  收藏  举报
ヾ(≧O≦)〃嗷~