Algs4-1.2.16有理数

 1.2.16有理数。为有理数实现一个可变数据类型Rational,支持加减乘除操作。无需测试溢出(请见练习1.2.17),只需使用两个long型实例变量表示分子和分母来控制溢出的可能性。使用欧几里得算法来保证分子和分母没有公因子。编写一个测试用例检测你实现的所有方法。
public class Rational
Rational(int numerator. int denominator)
Rational plus(Rational b) 该数与b之和
Rational minus(Rational b) 该数与b之差
Rational times(Rational b) 该数与b之积
Rational divides(Rational b) 该数与b之商
boolean equals(Rational that) 该数与that相等吗
String toString() 对象的字符串表示
答:
图片

public class Rational
{
   private final long myNumerator;
   private final long myDenominator;
 
   private long gcd(long p,long q)
   {
       if (q==0) return p;
       return gcd(q,p%q);
   }
 
   public Rational(long numerator, long denominator)
    {
       long gcdValue=gcd(numerator,denominator);
       myNumerator=numerator/gcdValue;
       myDenominator=denominator/gcdValue;
    }
  
   public long Numberator()
   {
       return myNumerator;
   }
 
   public long Denominator()
   {
       return myDenominator;
   }
 
    public Rational plus(Rational b)
    {
        long gcdValue=gcd(this.Denominator(),b.Denominator());
        long n=this.Numberator()*b.Denominator()/gcdValue+b.Numberator()*this.Denominator()/gcdValue;
        long d=this.Denominator()*b.Denominator()/gcdValue;
        //
        gcdValue=gcd(d,n);
        n=n/gcdValue;
        d=d/gcdValue;
        return new Rational(n,d);
     }
  
     public Rational minus(Rational b)
    {
        long gcdValue=gcd(this.Denominator(),b.Denominator());
        long n=this.Numberator()*b.Denominator()/gcdValue-b.Numberator()*this.Denominator()/gcdValue;
        long d=this.Denominator()*b.Denominator()/gcdValue;
        //
        gcdValue=gcd(d,n);
        n=n/gcdValue;
        d=d/gcdValue;
        return new Rational(n,d);
     }
   
      public Rational times(Rational b)
    {
        long gcdValue1=gcd(this.Numberator(),b.Denominator());
        long gcdValue2=gcd(this.Denominator(),b.Numberator());
        //
        long n=this.Numberator()/gcdValue1*b.Numberator()/gcdValue2;
        long d=this.Denominator()/gcdValue2*b.Denominator()/gcdValue1;
        return new Rational(n,d);
     }
  
      public Rational divides(Rational b)
    {
        long gcdValue1=gcd(this.Numberator(),b.Numberator());
        long gcdValue2=gcd(this.Denominator(),b.Denominator());
        //
        long n=this.Numberator()/gcdValue1*b.Denominator()/gcdValue2;
        long d=this.Denominator()/gcdValue2*b.Numberator()/gcdValue1;
        return new Rational(n,d);
     }

      public boolean equals(Rational that)
    {
        if(this==that) return true;
        if(that==null) return false;
        if(this.Numberator()!=that.Numberator()) return false;
        if(this.Denominator()!=that.Denominator()) return false;
        return true;
    }

    public String toString()
    {
        return this.Numberator()+"/"+this.Denominator();
     }
  
    public static void main(String[] args)
    {
        long Numberator=Long.parseLong(args[0]);
        long Denominator=Long.parseLong(args[1]);
    
        Rational r1=new Rational(Numberator,Denominator);
        Rational r2=new Rational(Numberator,Denominator);
        //=
        StdOut.printf("r1=%-7s r2=%-7s r1=rs2 is:%s\n",r1.toString(),r2.toString(),r1.equals(r2));
        //+
        StdOut.printf("r1=%-7s r2=%-7s r1+rs2=%-7s\n",r1.toString(),r2.toString(),r1.plus(r2));
        //-
        StdOut.printf("r1=%-7s r2=%-7s r1-rs2=%-7s\n",r1.toString(),r2.toString(),r1.minus(r2));
        //*
        StdOut.printf("r1=%-7s r2=%-7s r1*rs2=%-7s\n",r1.toString(),r2.toString(),r1.times(r2));
        // /
        StdOut.printf("r1=%-7s r2=%-7s r1/rs2=%-7s\n",r1.toString(),r2.toString(),r1.divides(r2));
      
    }
}

posted @ 2018-10-25 11:47  修电脑的龙生  阅读(188)  评论(0编辑  收藏  举报