《Language Implementation Patterns》之 构建语法树
如果要解释执行或转换一段语言,那么就无法在识别语法规则的同时达到目标,只有那些简单的,比如将wiki markup转换成html的功能,可以通过一遍解析来完成,这种应用叫做 syntax-directed应用。
更负载的功能,需要我们在完成parse的同时构建某种中间表示形式(Intermediate representation),简称为IR。实际上,我们一般构建一种叫做AST(abstract syntax tree)的结构,它保存了所有的token以及token之间的语法关系。在一个语言应用中,往往需要一遍一遍地遍历、修改这个AST。
接下来的内容晖介绍四种常见的AST构建模式:
- Pattern 8, Parse Tree, 记录了输入语言的语法结构,内部节点对应rule名称,叶子节点对应token;
- Pattern 9, Homogeneous AST, 对于tree来说,重要的是它的形状,而不是节点的数据类型,如果所有节点的数据类型是一样的,可以说他们是Homogeneous;
- Pattern 10,Normalized Homogeneous AST,有多种节点类型的tree叫做heterogeneous tree,Normalized Homogeneous AST的节点拥有类型一致的子节点,可以用一个list来表示;
- Pattern 11, Irregular Heterogeneous AST, 节点拥有不同类型的子节点,每个子节点占用一个field。
在这个系列的第一篇里面就展示了Parse Tree,Parse Tree在Parse的过程中就可以构造出来,完整地记录了Parse过程的轨迹;但Parse Tree并不是最好的IR,我们并不需要所有的内部节点。
构建AST
一个好的AST应该具有以下特征:
- Dense,没有不必要的节点
- Convenient,容易便利
- Meaningful,强调了操作符、操作数以及他们之间的关系
前两点意味着AST应该很容易、迅速地定位一个模式,语言应用需要多次地访问AST,这个结构应该足够简单;最后一点意味着AST应该对grammer定义的变更不敏感,一个与语法规则无关的变化(比如rule名字改变),不应该需要语言程序修改其他部分。
以一条语句x=0;为例,理想中的AST如下:
移除了";",因为他没有实际意义;移除了原来的内部节点,操作符变为字数的root,操作数变为叶子节点;这个AST没有了任何多余的节点。
AST如何解决操作符优先级
对于赋值操作x=1+2,连个操作符的求职顺序应该是先求职(1+2),再求值(x=*),AST只需要将优先级较高的操作符放在AST较深的节点即可。
通过文本来描述AST
有时候需要以文本的形式来呈现AST,使用如下的标记方法:
(a b c),a表示root;b、c表示子节点;
语句3+45的AST文本形式为(+ 3 ( 4 5))。
伪操作符
并不是所有的语句都有操作符,甚至有些语言本身就没有操作的概念。
比如c里面的变量声明:"int i",我们找不到一个操作符,因此需要制造一个;任何想象的符号都可以胜任,一般使用”VARDECL"这个符号。
java实现AST
在实现上,可以使用单一的类型来表示AST,这样的AST就是上文所说的homogeneous tree。
public class AST {
Token token; // node is derived from which token?
List<AST> children; // operands
public AST(Token token) { this.token = token; }
public void addChild(AST t) {
if ( children==null ) children = new ArrayList<AST>();
children.add(t);
}
}
对于ANTLR这样的工具来说,只有对normalized子节点类型,才能生成AST访问代码。统一的java类型并不意味这节点就不可以有类型,通过Token.getType()就可以获取足够的信息。
对于静态类型的语言,需要标记AST某些节点的类型,给这些节点加个字段叫做evalType,如果要保持homogeneous性,就要给所有的节点加上evalType,最终我们的节点包含了所有类型所需特殊字段的集合。为了解决这个问题,我们可以使用heterogeneous树,不同的节点有不同的类型。这些节点会以统一的AST类型作为基类。
public class ExprNode extends AST { DataType evalType; ... }
public class AddNode extends ExprNode { ... }
public class MultNode extends ExprNode { ... }
public class IntNode extends ExprNode { ... }
对于拥有normalized child list的节点来说,只能使用索引来访问子节点child[0],child[1],而不是“left","right"这样的名字。具备后者这种不规则子节点名字的AST就是Irregular Heterogeneous AST,显然具有更好的可读性。
ANTLR简介
ANTLR是一个语法解析器产生工具,本身是一个jar包,可以前往www.antlr.org下载,加载好之后添加响应的classpath。我用的是3.4版本,现在最新的是4.4版本,使用3.4是因为3.4有c语言的运行时库,而4.4只有java的运行时库。
antlr将语法定义放在一个.g文件里面,比如Graphics.g,包含所有的语法、词法规则:
grammar Graphics;
file : command+ ;
command : 'line' 'from' point 'to' point ;
point : INT ',' INT ;
INT : '0'..'9'+ ;
WS : (' '|'\t'|'\r'|'\n'){skip();} ;
语法规则的名字是小写单词,token的定义为大写单词。
命令行下cd到Graphics.g所在目录:
$ java org.antlr.Tool Graphics.g
$ ls
Graphics.g GraphicsLexer.java box Graphics.tokens GraphicsParser.java
Graphics.tokens是一个数据文件,包含所有的token信息,GraphicsLexer.java是词法分析器, GraphicsParser.java是语法分析器。读者可以按原书的指引尝试一下。
通过ANTLR构造AST
暂且不管antlr的grammar语法细节,先粗略看一下grammarr如何为我们构造ast。
以一个向量计算的语法为例:
//示例语句
z = [1, 2] + [3, 4]
a = [1, 2] . [3, 4]
//语法
statlist : stat+ ;
stat: ID '=' expr ;
expr: primary ('+' primary)* ;
antrl支持向grammar里面插入指令来构造ast:
expr returns [AST tr]
: a=primary {$tr = $a.tr;}
('+' b=primary {$tr = new AddNode($tr,$b.tr);})*
插入的指令是类java代码,antlr有内置的与语言无关的ast支持,如下:
grammar VecMathAST;
options {output=AST;} // we want to create ASTs
tokens {VEC;} // define imaginary token for vector literal
// START: stat
statlist : stat+ ; // builds list of stat trees
stat: ID '=' expr -> ^('=' ID expr) // '=' is operator subtree root
;
primary : INT // automatically create AST node from INT's text
| ID // automatically create AST node from ID text
| '[' expr (',' expr)* ']' -> ^(VEC expr+)
在options里面指定了parser的输出是ast,对每条rule制定了生成对应子树的规则^(...),上面语法中的('=' ID expr)
,表示=是root节点,ID和expr是两个子节点,对于primary : INT这样的规则,antlr可以自动创建出叶子节点;有些时候我们要创建额外的token来充当子树的root,比如上面VEC。
默认antlr创建homogeneous AST,有统一的节点类型CommonTree,通过gammar可以告诉antrl创建heterogeneous AST:
primary
: INT<IntNode> // create IntNode from INT's text
| ID<VarNode> // create VarNode from ID's text
| '[' expr (',' expr)* ']' -> ^(VEC<VectorNode> expr+) ;
Pattern 8, Parse Tree,
优点在与Parse的过程可能很自然的构造Parse Tree,缺点在于过多的无用节点。
Parse Tree又叫做Syntax tree(对比于Abstract Syntax Tree),完整地体现了输入的语法结构;虽然对解释器和翻译器这样的应用来说Parse Tree不是很有用,但是在开发环境和文字重写系统中有广泛使用。
Parse Tree的特点在前面已经讲过,不在赘述。在实现上,应为Parser的过程其实就是识别语法树的过程,因此只要在Parser的每个rule方法里面加上对应的节点构建代码即可:
void «rule»() {
RuleNode r = new RuleNode("«rule»");
if ( root==null ) root = r; // we're the start rule
else currentNode.addChild(r); // add this rule to current node
ParseTree _save = currentNode;
currentNode = r; // "descend" into this rule
«normal-rule-code»
currentNode = _save; // restore node to previous value
}
Pattern 9,Homogeneous AST
优点:统一的节点类型,简单;缺点:单一的类型需要兼顾所有节点类型的需求。
实际上,对于非面向对象的语言(C语言)来说,Homogeneous AST是唯一的选择。
节点的定义类似一下代码:
public class AST { // Homogeneous AST node type
Token token; // From which token did we create node?
List<AST> children; // normalized list of children
}
Pattern 10, Normalized Heteogeneous AST
优点:可以为操作符和操作数增加自定义的字段和方法;缺点:大量的节点类型需要被定义
该AST有不同的节点类型,仍然有统一的child list,因此节点类都继承自统一的AST。
public abstract class ExpreNode extends AST {
int evalType //expression value type
}
public class AddNode extedns ExprNode {
pulic AddNode(ExprNode left, Token addToken, ExprNode right) {
super(addToken);
addChild(left);
addChild(right);
}
}
Pattern 11, Irregular Heterogeneours AST
优点:对子节点的访问更加可读,体现了子树的语法含义;缺点:与Pattern 10一样大量的节点类型被定义,而且相应的ast遍历算法也比较复杂。
该AST的节点类型不一致,而且对子节点的访问方式也不一致:
public class AddNode extends ExprNode {
ExprNode left, right; // named, node-specific, irregular children
public AddNode(ExprNode left, Token addToken, ExprNode right) {
super(addToken);
this.left = left;
this.right = right;
}
}
如果手动构建ast的话,很自然会选择这种方式;这种方式只适合比较小的应用。