[Leetcode] Median of Two Sorted Arrays
大致思路:
先寻找每个数组的中位数,因为是排好顺序的数组,因此,可以在O(1)时间内找到。然后,比较这两个数字的大小。如果A的中位数大于B的中位数,则在A的前半个数组和B的后半个数组中寻找; 反之,在B的前半个数组和A的后半个数组寻找。根据递归方程,解得时间复杂度是O(lg(n)).
A general version:
Find the Kth element of two sorted arrays A[] and B[].
1 #include <cstdio> 2 #include <iostream> 3 #include <cstdlib> 4 using namespace std; 5 6 int findKthElem(int A[], int aBeg, int aEnd, int B[], int bBeg, int bEnd, int k){ 7 8 //cout << aBeg << " | " << aEnd << " | " << bBeg << " | " << bEnd << " | " << k << endl; 9 10 if(aBeg > aEnd){ 11 return B[bBeg + k - 1]; 12 } 13 if(bBeg > bEnd){ 14 return A[aBeg + k - 1]; 15 } 16 17 int aMid = (aBeg + aEnd) >> 1; 18 int bMid = (bBeg + bEnd) >> 1; 19 int len = aMid - aBeg + bMid - bBeg + 2; 20 21 if(len > k){ 22 if(A[aMid] < B[bMid]){ 23 return findKthElem(A, aBeg, aEnd, B, bBeg, bMid-1, k); 24 } 25 else{ 26 return findKthElem(A, aBeg, aMid-1, B, bBeg, bEnd, k); 27 } 28 } 29 else{ 30 if(A[aMid] < B[bMid]){ 31 return findKthElem(A, aMid+1, aEnd, B, bBeg, bEnd, k-(aMid-aBeg+1)); 32 } 33 else{ 34 return findKthElem(A, aBeg, aEnd, B, bMid+1, bEnd, k-(bMid-bBeg+1)); 35 } 36 } 37 } 38 39 int main() 40 { 41 const int ALen = 11; 42 const int BLen = 5; 43 44 int apos = 0; 45 int bpos = 0; 46 int A[ALen]; 47 int B[ALen]; 48 49 //生成两个递增数组A 和 B 50 for (int i = 1; i <= ALen + BLen; ++i) 51 { 52 if (apos >= ALen) 53 { 54 B[bpos++] = i; 55 } 56 else if (bpos >= BLen) 57 { 58 A[apos++] = i; 59 } 60 else 61 { 62 if (rand()%2 == 1) 63 { 64 A[apos++] = i; 65 } 66 else 67 { 68 B[bpos++] = i; 69 } 70 } 71 } 72 73 //输出A和B的内容 74 for (int i = 0; i < ALen; ++i) 75 { 76 cout <<A[i] <<" "; 77 } 78 cout <<endl; 79 for (int i = 0; i < BLen; ++i) 80 { 81 cout <<B[i] <<" "; 82 } 83 cout <<endl; 84 85 //验证每个K是不是正解 86 for (int i = 1; i <= ALen + BLen; ++i) 87 { 88 cout << i <<" : "<<findKthElem(A, 0 , ALen - 1, B, 0 , BLen - 1, i)<<endl; 89 } 90 91 return 0; 92 }
参考:
http://blog.csdn.net/realxie/article/details/8078043
http://doudouclever.blog.163.com/blog/static/175112310201151584521268/
http://www.cnblogs.com/etcow/archive/2012/09/26/2704855.html