1986年,Rumelhart等提出了误差反向传播神经网络,简称BP网络(Back Propagation),该网络是一种单向传播的多层前向网络。误差反向传播的BP算法简称BP算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。
含一个隐含层的BP网络结构如图7-5所示,图中 为输入层神经元,为隐层神经元,为输出层神经元。
一、BP网络逼近的结构
BP网络逼近的结构如图所示,图中k为网络的迭代步骤,u(k)和y(k)为逼近器的输入。BP为网络逼近器,y(k)为被控对象实际输出,yn(k)为BP的输出。将系统输出y(k)及输入u(k)的值作为逼近器BP的输入,将系统输出与网络输出的误差作为逼近器的调整信号。
二、BP网络的优缺点
BP网络的优点为:
(1)只要有足够多的隐层和隐层节点,BP网络可以逼近任意的非线性映射关系;
(2)BP网络的学习算法属于全局逼近算法,具有较强的泛化能力。
(3)BP网络输入输出之间的关联信息分布地存储在网络的连接权中,个别神经元的损坏只对输入输出关系有较小的影响,因而BP网络具有较好的容错性。
BP网络的主要缺点为:
(1)待寻优的参数多,收敛速度慢;
(2)目标函数存在多个极值点,按梯度下降法进行学习,很容易陷入局部极小值;
(3)难以确定隐层及隐层节点的数目。目前,如何根据特定的问题来确定具体的网络结构尚无很好的方法,仍需根据经验来试凑。
应用:
由于BP网络具有很好的逼近非线性映射的能力,该网络在模式识别、图像处理、系统辨识、函数拟合、优化计算、最优预测和自适应控制等领域有着较为广泛的应用。
由于BP网络具有很好的逼近特性和泛化能力,可用于神经网络控制器的设计。但由于BP网络收敛速度慢,难以适应实时控制的要求。
三、BP网络逼近仿真实例
使用BP网络逼近对象:
%BP identification clear all; close all; xite=0.50; alfa=0.05; w2=rands(6,1); w2_1=w2;w2_2=w2_1; w1=rands(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.50*sin(3*2*pi*k*ts); y(k)=u_1^3+y_1/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; % Output of NNI networks e(k)=y(k)-yn(k); % Error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); end end w1=w1_1+dw1+alfa*(w1_1-w1_2); %%%%%%%%%%%%%%Jacobian%%%%%%%%%%%%%%%% yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn'); figure(2); plot(time,y-yn,'r'); xlabel('times');ylabel('error'); figure(3); plot(time,dyu); xlabel('times');ylabel('dyu');