Linux Kernel Development有关内存管理

1 Pages

Page的概念来源为处理器Processor的部件MMU(Memory Management Unit),MMU通过设置好的页表(通过设置CR3寄存器,指向页目录所在的物理内存)对内存进行管理,管理操作包括:

 

a) 建立线性内存地址与物理内存地址的对应关系,即pa()和va()函数;

b) 管理哪些内存页驻存(Resident)于物理内存中,而哪些内存被交换到Swap文件中;

c) 哪些内存页被映射到哪个进程的虚拟地址空间;

d) 管理哪些内存页存储磁盘上(或者文件系统中)文件的缓存;

 

数据结构, struct page

   1: /*
   2:  * Each physical page in the system has a struct page associated with
   3:  * it to keep track of whatever it is we are using the page for at the
   4:  * moment. Note that we have no way to track which tasks are using
   5:  * a page, though if it is a pagecache page, rmap structures can tell us
   6:  * who is mapping it.
   7:  */
   8: struct page {
   9:     unsigned long flags;        /* Atomic flags, some possibly
  10:                      * updated asynchronously */
  11:     atomic_t _count;        /* Usage count, see below. */
  12:     union {
  13:         /*
  14:          * Count of ptes mapped in
  15:          * mms, to show when page is
  16:          * mapped & limit reverse map
  17:          * searches.
  18:          *
  19:          * Used also for tail pages
  20:          * refcounting instead of
  21:          * _count. Tail pages cannot
  22:          * be mapped and keeping the
  23:          * tail page _count zero at
  24:          * all times guarantees
  25:          * get_page_unless_zero() will
  26:          * never succeed on tail
  27:          * pages.
  28:          */
  29:         atomic_t _mapcount;
  30:  
  31:         struct {        /* SLUB */
  32:             u16 inuse;
  33:             u16 objects;
  34:         };
  35:     };
  36:     union {
  37:         struct {
  38:         unsigned long private;        /* Mapping-private opaque data:
  39:                           * usually used for buffer_heads
  40:                          * if PagePrivate set; used for
  41:                          * swp_entry_t if PageSwapCache;
  42:                          * indicates order in the buddy
  43:                          * system if PG_buddy is set.
  44:                          */
  45:         struct address_space *mapping;    /* If low bit clear, points to
  46:                          * inode address_space, or NULL.
  47:                          * If page mapped as anonymous
  48:                          * memory, low bit is set, and
  49:                          * it points to anon_vma object:
  50:                          * see PAGE_MAPPING_ANON below.
  51:                          */
  52:         };
  53: #if USE_SPLIT_PTLOCKS
  54:         spinlock_t ptl;
  55: #endif
  56:         struct kmem_cache *slab;    /* SLUB: Pointer to slab */
  57:         struct page *first_page;    /* Compound tail pages */
  58:     };
  59:     union {
  60:         pgoff_t index;        /* Our offset within mapping. */
  61:         void *freelist;        /* SLUB: freelist req. slab lock */
  62:     };
  63:     struct list_head lru;        /* Pageout list, eg. active_list
  64:                      * protected by zone->lru_lock !
  65:                      */
  66:     /*
  67:      * On machines where all RAM is mapped into kernel address space,
  68:      * we can simply calculate the virtual address. On machines with
  69:      * highmem some memory is mapped into kernel virtual memory
  70:      * dynamically, so we need a place to store that address.
  71:      * Note that this field could be 16 bits on x86 ... ;)
  72:      *
  73:      * Architectures with slow multiplication can define
  74:      * WANT_PAGE_VIRTUAL in asm/page.h
  75:      */
  76: #if defined(WANT_PAGE_VIRTUAL)
  77:     void *virtual;            /* Kernel virtual address (NULL if
  78:                        not kmapped, ie. highmem) */
  79: #endif /* WANT_PAGE_VIRTUAL */
  80: #ifdef CONFIG_WANT_PAGE_DEBUG_FLAGS
  81:     unsigned long debug_flags;    /* Use atomic bitops on this */
  82: #endif
  83:  
  84: #ifdef CONFIG_KMEMCHECK
  85:     /*
  86:      * kmemcheck wants to track the status of each byte in a page; this
  87:      * is a pointer to such a status block. NULL if not tracked.
  88:      */
  89:     void *shadow;
  90: #endif
  91: };

每个page结构体对象,代表一个物理内存页。

 

x) flags

   1: enum pageflags {
   2:     PG_locked,        /* Page is locked. Don't touch. */
   3:     PG_error,
   4:     PG_referenced,
   5:     PG_uptodate,
   6:     PG_dirty,
   7:     PG_lru,
   8:     PG_active,
   9:     PG_slab,
  10:     PG_owner_priv_1,    /* Owner use. If pagecache, fs may use*/
  11:     PG_arch_1,
  12:     PG_reserved,
  13:     PG_private,        /* If pagecache, has fs-private data */
  14:     PG_private_2,        /* If pagecache, has fs aux data */
  15:     PG_writeback,        /* Page is under writeback */
  16: #ifdef CONFIG_PAGEFLAGS_EXTENDED
  17:     PG_head,        /* A head page */
  18:     PG_tail,        /* A tail page */
  19: #else
  20:     PG_compound,        /* A compound page */
  21: #endif
  22:     PG_swapcache,        /* Swap page: swp_entry_t in private */
  23:     PG_mappedtodisk,    /* Has blocks allocated on-disk */
  24:     PG_reclaim,        /* To be reclaimed asap */
  25:     PG_swapbacked,        /* Page is backed by RAM/swap */
  26:     PG_unevictable,        /* Page is "unevictable"  */
  27: #ifdef CONFIG_MMU
  28:     PG_mlocked,        /* Page is vma mlocked */
  29: #endif
  30: #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  31:     PG_uncached,        /* Page has been mapped as uncached */
  32: #endif
  33: #ifdef CONFIG_MEMORY_FAILURE
  34:     PG_hwpoison,        /* hardware poisoned page. Don't touch */
  35: #endif
  36: #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  37:     PG_compound_lock,
  38: #endif
  39:     __NR_PAGEFLAGS,
  40:  
  41:     /* Filesystems */
  42:     PG_checked = PG_owner_priv_1,
  43:  
  44:     /* Two page bits are conscripted by FS-Cache to maintain local caching
  45:      * state.  These bits are set on pages belonging to the netfs's inodes
  46:      * when those inodes are being locally cached.
  47:      */
  48:     PG_fscache = PG_private_2,    /* page backed by cache */
  49:  
  50:     /* XEN */
  51:     PG_pinned = PG_owner_priv_1,
  52:     PG_savepinned = PG_dirty,
  53:  
  54:     /* SLOB */
  55:     PG_slob_free = PG_private,
  56:  
  57:     /* SLUB */
  58:     PG_slub_frozen = PG_active,
  59: };

 

x) _count

引用计数,代表有多少处引用到该物理内存页对象。

访问_count时,不要直接访问,调用 page_count()对象进行访问。

 

x) private, mapping

   1: struct address_space {
   2:     struct inode        *host;        /* owner: inode, block_device */
   3:     struct radix_tree_root    page_tree;    /* radix tree of all pages */
   4:     spinlock_t        tree_lock;    /* and lock protecting it */
   5:     unsigned int        i_mmap_writable;/* count VM_SHARED mappings */
   6:     struct prio_tree_root    i_mmap;        /* tree of private and shared mappings */
   7:     struct list_head    i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
   8:     struct mutex        i_mmap_mutex;    /* protect tree, count, list */
   9:     /* Protected by tree_lock together with the radix tree */
  10:     unsigned long        nrpages;    /* number of total pages */
  11:     pgoff_t            writeback_index;/* writeback starts here */
  12:     const struct address_space_operations *a_ops;    /* methods */
  13:     unsigned long        flags;        /* error bits/gfp mask */
  14:     struct backing_dev_info *backing_dev_info; /* device readahead, etc */
  15:     spinlock_t        private_lock;    /* for use by the address_space */
  16:     struct list_head    private_list;    /* ditto */
  17:     struct address_space    *assoc_mapping;    /* ditto */
  18: } __attribute__((aligned(sizeof(long))));

 

x) virtual

虚拟地址,如果是高端内存(HighMem),那么该物理页可能不是长久地映射到内核的内存空间中,所以该字段为NULL。

 

 

struct page

这个结构只是用来描述物理内存页,而与该页中存储的内容无关。

物理内存页的可能属主(Owner)有:

  • user-space processes, 用户态的进程
  • dynamically allocated kernel data, 内核态中动态分配的数据
  • static kernel code, 内核静态代码
  • the page cache,页缓存

 

可能程序员对为每个物理内存页都分配一个struct page而感到吃惊,“那得分配多少内存啊,多浪费啊!”。

实际上以4GB内存为例,大概需要40MB的内存来存储所有struct page的对象,相对于它能够管理的4GB物理内存,还是十分微不足道的。

 

2. Zones

“为什么不利用用户态的3GB的地址空间来映射内核的1GB地址空间映射不下的物理内存?”

因为其实,内核在工作时,是不考虑存在着用户空间的。

内核要处理的任务远比支撑用户空间要复杂。

 

为什么要使用不同的Zone?

有些硬件设备的DMA能访问的内存空间十分有即,比如x86的ISA总线,只能访问0~16M的物理内存,那么如果这段内存被随便地分配掉了,ISA设备就可能无法工作了。

ISA

 

ISA插槽是基于ISA总线(Industrial Standard Architecture,工业标准结构总线)的扩展插槽,其颜色一般为黑色,比PCI接口插槽要长些,位于主板的最下端。其工作频率为8MHz左右,为16位插槽,最大传输率16MB/sec,可插接显卡,声卡,网卡以及所谓的多功能接口卡等扩展插卡。其缺点是CPU资源占用太高,数据传输带宽太小,是已经被淘汰的插槽接口。(http://baike.baidu.com/view/13594.htm

ISA

HighMem

对于x86体系结构,以896MB物理内存为界,大于该范围的为高端内存(High Memory),而小于该范围的为低端内存(Low Memory)。

 

内核无法直接映射HighMem区域的物理内存,只能以暂时的方式映射其中一小部分使用,当需要使用其他的高端内存时,可以需要打破之前建立的暂时映射,而用于新的映射,就像是内存交换机制一样。

posted @ 2013-12-24 15:46  Daniel King  阅读(495)  评论(0编辑  收藏  举报