Hdu 4734 F(X) 数位dp
F(x)
Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3692 Accepted Submission(s): 1377
Problem Description
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
For each test case, there are two numbers A and B (0 <= A,B < 109)
Output
For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.
Sample Input
3
0 100
1 10
5 100
Sample Output
Case #1: 1
Case #2: 2
Case #3: 13
题意:定义F(x) = A n * 2 n-1 + A n-1 * 2 n-2 + ... + A 2 * 2 + A1 * 1。 输入两个数A、B,求0~b中有多少数x,使得F(x) <= F(A);
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define ll long long int dig[30]; ll dp[30][10000]; ll Fa; ll dfs(int pos, ll maxx, int lim) { if(pos == -1) return maxx >= 0; if(maxx < 0) return 0; if(!lim && dp[pos][maxx] != -1) return dp[pos][maxx]; int End = lim ? dig[pos] : 9; ll res = 0; for(int i = 0; i <= End; i++) { res += dfs(pos - 1, maxx - i * (1 << pos), lim && (i == End)); } if(!lim) dp[pos][maxx] = res; return res; } ll func(ll a, ll num) { int n = 0; if(a == 0) return 1; while(num) { dig[n++] = num % 10; num /= 10; } int base = 1; while(a) { Fa += (a % 10) * base; a /= 10; base *= 2; } dfs(n - 1, Fa, 1); } int main() { int t; scanf("%d", &t); memset(dp, -1, sizeof(dp)); ll a, b; int val = 0; while(t--) { Fa = 0; scanf("%I64d %I64d", &a, &b); printf("Case #%d: %I64d\n", ++val, func(a, b)); } }