Loading

基于bert的中文文本分类

这次我们使用今日头条信息流中抽取的38w条新闻标题数据作为数据集。数据集中的文本长度在10到30之间,一共15个类别。

数据预处理:

import torch
from tqdm import tqdm
import time
from datetime import timedelta

PAD, CLS = '[PAD]', '[CLS]'  # padding符号, bert中综合信息符号


def build_dataset(config):

    def load_dataset(path, pad_size=32):
        contents = []
        with open(path, 'r', encoding='UTF-8') as f:
            for line in tqdm(f):
                # 读数据,去除首尾空格,分离标签与句子内容
                lin = line.strip()
                if not lin:
                    continue
                content, label = lin.split('\t')
                # 使用配置中的tokenize对句子内容进行分割,句首增加'[CLS]'
                token = config.tokenizer.tokenize(content) 
                token = [CLS] + token
                seq_len = len(token)
                mask = []
                token_ids = config.tokenizer.convert_tokens_to_ids(token)
                if pad_size:
                    if len(token) < pad_size:
                        mask = [1] * len(token_ids) + [0] * (pad_size - len(token))
                        token_ids += ([0] * (pad_size - len(token)))
                    else:
                        mask = [1] * pad_size
                        token_ids = token_ids[:pad_size]
                        seq_len = pad_size
                contents.append((token_ids, int(label), seq_len, mask))
        return contents
    train = load_dataset(config.train_path, config.pad_size)
    dev = load_dataset(config.dev_path, config.pad_size)
    test = load_dataset(config.test_path, config.pad_size)
    return train, dev, test


class DatasetIterater(object):
    def __init__(self, batches, batch_size, device):
        self.batch_size = batch_size
        self.batches = batches
        self.n_batches = len(batches) // batch_size
        self.residue = False  # 记录batch数量是否为整数
        if len(batches) % self.n_batches != 0:
            self.residue = True
        self.index = 0
        self.device = device

    def _to_tensor(self, datas):
        x = torch.LongTensor([_[0] for _ in datas]).to(self.device)
        y = torch.LongTensor([_[1] for _ in datas]).to(self.device)

        # pad前的长度(超过pad_size的设为pad_size)
        seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device)
        mask = torch.LongTensor([_[3] for _ in datas]).to(self.device)
        return (x, seq_len, mask), y

    def __next__(self):
        if self.residue and self.index == self.n_batches:
            batches = self.batches[self.index * self.batch_size: len(self.batches)]
            self.index += 1
            batches = self._to_tensor(batches)
            return batches

        elif self.index >= self.n_batches:
            self.index = 0
            raise StopIteration
        else:
            batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size]
            self.index += 1
            batches = self._to_tensor(batches)
            return batches

    def __iter__(self):
        return self

    def __len__(self):
        if self.residue:
            return self.n_batches + 1
        else:
            return self.n_batches


def build_iterator(dataset, config):
    iter = DatasetIterater(dataset, config.batch_size, config.device)
    return iter


def get_time_dif(start_time):
    """获取已使用时间"""
    end_time = time.time()
    time_dif = end_time - start_time
    return timedelta(seconds=int(round(time_dif)))

接下来,定义模型。这里我们用到了pytorch_pretrained_bert这个包:

!pip install pytorch_pretrained_bert

import torch
import torch.nn as nn
from pytorch_pretrained_bert import BertModel, BertTokenizer


class Config(object):

    """配置参数"""
    def __init__(self, dataset):
        self.model_name = 'bert'
        self.train_path = dataset + '/data/train.txt'                                # 训练集
        self.dev_path = dataset + '/data/dev.txt'                                    # 验证集
        self.test_path = dataset + '/data/test.txt'                                  # 测试集
        self.class_list = [x.strip() for x in open(
            dataset + '/data/class.txt').readlines()]                                # 类别名单
        self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt'        # 模型训练结果
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备

        self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练
        self.num_classes = len(self.class_list)                         # 类别数
        self.num_epochs = 3                                             # epoch数
        self.batch_size = 128                                           # mini-batch大小
        self.pad_size = 32                                              # 每句话处理成的长度(短填长切)
        self.learning_rate = 5e-5                                       # 学习率
        self.bert_path = '/content/drive/Shared drives/A/data/pre_training/bert_pretain'  # 预训练模型
        self.tokenizer = BertTokenizer.from_pretrained(self.bert_path)
        self.hidden_size = 768


class Model(nn.Module):

    def __init__(self, config):
        super(Model, self).__init__()
        self.bert = BertModel.from_pretrained(config.bert_path)
        for param in self.bert.parameters():
            param.requires_grad = True
        self.fc = nn.Linear(config.hidden_size, config.num_classes)

    def forward(self, x):
        context = x[0]  # 输入的句子
        mask = x[2]  # 对padding部分进行mask,和句子一个size,padding部分用0表示,如:[1, 1, 1, 1, 0, 0]
        _, pooled = self.bert(context, attention_mask=mask, output_all_encoded_layers=False)
        out = self.fc(pooled)
        return out

定义训练和测试方法:

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
import time
from pytorch_pretrained_bert.optimization import BertAdam


# 权重初始化,默认xavier
def init_network(model, method='xavier', exclude='embedding', seed=123):
    for name, w in model.named_parameters():
        if exclude not in name:
            if len(w.size()) < 2:
                continue
            if 'weight' in name:
                if method == 'xavier':
                    nn.init.xavier_normal_(w)
                elif method == 'kaiming':
                    nn.init.kaiming_normal_(w)
                else:
                    nn.init.normal_(w)
            elif 'bias' in name:
                nn.init.constant_(w, 0)
            else:
                pass


def train(config, model, train_iter, dev_iter, test_iter):
    start_time = time.time()
    model.train()  # model.train()将启用BatchNormalization和Dropout,相应的,model.eval()则不启用BatchNormalization和Dropout
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]
    # optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
    optimizer = BertAdam(optimizer_grouped_parameters,
                         lr=config.learning_rate,
                         warmup=0.05,
                         t_total=len(train_iter) * config.num_epochs)
    total_batch = 0  # 记录进行到多少batch
    dev_best_loss = float('inf')
    last_improve = 0  # 记录上次验证集loss下降的batch数
    flag = False  # 记录是否很久没有效果提升
    model.train()
    for epoch in range(config.num_epochs):
        print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
        for i, (trains, labels) in enumerate(train_iter):
            outputs = model(trains)
            model.zero_grad()
            loss = F.cross_entropy(outputs, labels)
            loss.backward()
            optimizer.step()
            if total_batch % 100 == 0:
                # 每多少轮输出在训练集和验证集上的效果
                true = labels.data.cpu()
                predic = torch.max(outputs.data, 1)[1].cpu()
                train_acc = metrics.accuracy_score(true, predic)
                dev_acc, dev_loss = evaluate(config, model, dev_iter)
                if dev_loss < dev_best_loss:
                    dev_best_loss = dev_loss
                    torch.save(model.state_dict(), config.save_path)
                    improve = '*'
                    last_improve = total_batch
                else:
                    improve = ''
                time_dif = get_time_dif(start_time)
                msg = 'Iter: {0:>6},  Train Loss: {1:>5.2},  Train Acc: {2:>6.2%},  Val Loss: {3:>5.2},  Val Acc: {4:>6.2%},  Time: {5} {6}'
                print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
                model.train()
            total_batch += 1
            if total_batch - last_improve > config.require_improvement:
                # 验证集loss超过1000batch没下降,结束训练
                print("No optimization for a long time, auto-stopping...")
                flag = True
                break
        if flag:
            break
    test(config, model, test_iter)


def test(config, model, test_iter):
    # test
    model.load_state_dict(torch.load(config.save_path))
    model.eval()
    start_time = time.time()
    test_acc, test_loss, test_report, test_confusion = evaluate(config, model, test_iter, test=True)
    msg = 'Test Loss: {0:>5.2},  Test Acc: {1:>6.2%}'
    print(msg.format(test_loss, test_acc))
    print("Precision, Recall and F1-Score...")
    print(test_report)
    print("Confusion Matrix...")
    print(test_confusion)
    time_dif = get_time_dif(start_time)
    print("Time usage:", time_dif)


def evaluate(config, model, data_iter, test=False):
    model.eval()
    loss_total = 0
    predict_all = np.array([], dtype=int)
    labels_all = np.array([], dtype=int)
    with torch.no_grad():
        for texts, labels in data_iter:
            outputs = model(texts)
            loss = F.cross_entropy(outputs, labels)
            loss_total += loss
            labels = labels.data.cpu().numpy()
            predic = torch.max(outputs.data, 1)[1].cpu().numpy()
            labels_all = np.append(labels_all, labels)
            predict_all = np.append(predict_all, predic)

    acc = metrics.accuracy_score(labels_all, predict_all)
    if test:
        report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
        confusion = metrics.confusion_matrix(labels_all, predict_all)
        return acc, loss_total / len(data_iter), report, confusion
    return acc, loss_total / len(data_iter)

开始训练:

import time
import torch
import numpy as np

dataset_path = '/content/drive/Shared drives/A/data/今日头条文本分类数据集'

config = Config(dataset_path)  # 初始化配置
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True  # 固定随机因子

start_time = time.time()
print("Loading data...")
train_data, dev_data, test_data = build_dataset(config)  # 数据集预处理
train_iter = build_iterator(train_data, config)      
dev_iter = build_iterator(dev_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)

# train
model = Model(config).to(config.device)  # 确定训练设备
train(config, model, train_iter, dev_iter, test_iter)  # 开始训练

由于colab显存不够,所以调小了batch_size,训练了三小时左右,最终在准确率上比原作者的83.81%高出了0.46%,可见bert的性能还是非常不错的:

Test Loss:  0.56,  Test Acc: 84.27%
Precision, Recall and F1-Score...
                    precision    recall  f1-score   support

        news_story     0.7703    0.8085    0.7889       282
      news_culture     0.7942    0.8745    0.8324      1474
news_entertainment     0.9271    0.8249    0.8730      1959
       news_sports     0.9472    0.9007    0.9234      1833
      news_finance     0.8012    0.7189    0.7578      1430
        news_house     0.9148    0.8784    0.8962       880
          news_car     0.9373    0.8898    0.9129      1815
          news_edu     0.8684    0.8494    0.8588      1321
         news_tech     0.7520    0.8952    0.8174      2070
     news_military     0.8391    0.7913    0.8145      1265
       news_travel     0.7840    0.7810    0.7825      1064
        news_world     0.6910    0.8112    0.7463      1340
             stock     0.0000    0.0000    0.0000        15
  news_agriculture     0.8754    0.8011    0.8366       930
         news_game     0.8893    0.8826    0.8859      1456

          accuracy                         0.8427     19134
         macro avg     0.7861    0.7805    0.7818     19134
      weighted avg     0.8481    0.8427    0.8435     19134
posted @ 2020-04-23 10:57  云野Winfield  阅读(8818)  评论(1编辑  收藏  举报