摘要: 有正负收益,考虑最小割 因为有依赖关系,所以考虑最大权闭合子图 首先对每个d[i][j]建个点,正权连(s,id[i][j],d[i][j])并加到ans上,负权连(id[i][j],t, d[i][j]) 然后选了大区间一定会选小区间,连这样的依赖关系:(id[i][j],id[i+1][j],i 阅读全文
posted @ 2019-04-26 21:09 lokiii 阅读(84) 评论(0) 推荐(0) 编辑
摘要: 上来就跑3e5的最大流……脑子抽了 很容易看出,每个地方的海拔都是0或1因为再高了没有意义,又,上去下来再上去没有意义,所以最后一定是从s连着一片0,剩下连着t一片1,然后有贡献的就是01交接的那些边 跑个最小割就好了 然而跑不过,考虑建对偶图,也就是网格的空当成一个点,然后这些点之间互相连边的权值 阅读全文
posted @ 2019-04-26 17:18 lokiii 阅读(105) 评论(0) 推荐(0) 编辑
摘要: 一开始在https://www.cnblogs.com/lokiii/p/10770919.html基础上连(i,j,b[i][j])建了个极丑的图T掉了……把dinic换成isap勉强能卡过 首先因为有正负收益所以考虑最小割,先ans=Σb,然后考虑负收益 把割完后和s相邻的视为不选,反之视为选, 阅读全文
posted @ 2019-04-26 10:30 lokiii 阅读(97) 评论(0) 推荐(0) 编辑