bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级【分层图+spfa】
至死不用dijskstra系列2333,洛谷上T了一个点,开了O2才过
基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为0,表示免了这条边的边权,然后答案就是第0层的s到k层的t的最短路,因为0权边总是从上一层连到下一层,所以到达k层就表示走了k条0权边
这样的点数是nk的,不管是dijskstra还是spfa都跑不过
然后仔细观察这张图的特性,发现不同层之间的更新只有上一层通过0权边更新下一层,所以考虑单层更新,每一层都做一次spfa,然后跨层的时候用上一层跑过的最短路和0权边更新下一层
然后给spfa加一个SLF优化即可
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<ctime>
using namespace std;
const int N=50005,inf=1e9;
int n,m,k,h[N],cnt,dis[N],d[N];
bool v[N];
deque<int>q;
struct qwe
{
int ne,no,to,va;
}e[N<<2];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void spfa()
{
while(!q.empty())
{
int u=q.front();
q.pop_front();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(dis[e[i].to]>dis[u]+e[i].va)
{
dis[e[i].to]=dis[u]+e[i].va;
if(!v[e[i].to])
{
v[e[i].to]=1;
if(!q.empty()&&dis[q.front()]>dis[e[i].to])
q.push_front(e[i].to);
else
q.push_back(e[i].to);
}
}
}
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(x,y,z),add(y,x,z);
// for(int j=0;j<=k;j++)
// add(x+j*n,y+j*n,z),add(y+j*n,x+j*n,z);
// for(int j=1;j<=k;j++)
// add(x+(j-1)*n,y+j*n,0),add(y+(j-1)*n,x+j*n,0);
}
for(int i=1;i<=n;i++)
dis[i]=inf;
// clock_t st,ed;
// st=clock();
v[1]=1,dis[1]=0,q.push_back(1);
spfa();
for(int con=1;con<=k;con++)
{
for(int i=1;i<=n;i++)
d[i]=inf;
v[1]=1,dis[1]=0,q.push_back(1);
for(int i=1;i<=cnt;i++)
if(d[e[i].to]>dis[e[i].no])
{
d[e[i].to]=dis[e[i].no];
if(!v[e[i].to])
{
v[e[i].to]=1;
if(!q.empty()&&d[q.front()]>d[e[i].to])
q.push_front(e[i].to);
else
q.push_back(e[i].to);
}
}
for(int i=1;i<=n;i++)
dis[i]=d[i];
spfa();
}
// ed=clock();
// cerr<<st<<" "<<ed<<" "<<ed-st<<endl;
printf("%d\n",dis[n]);
return 0;
}