bzoj 1834: [ZJOI2010]network 网络扩容【最大流+最小费用最大流】
第一问直接跑最大流即可。建图的时候按照费用流建,费用为0.
对于第二问,在第一问dinic剩下的残量网络上建图,对原图的每条边(i,j),建(i,j,inf,cij),表示可以用c的花费增广这条路。然后从新建一个源点,连(s,1,k,0)表示要增加k的流量。跑最小费用最大流即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1000005,inf=1e9;
int n,m,k,h[N],cnt=1,le[N],s,t,ans,dis[N],fr[N],c[N];
bool v[N];
struct qwe
{
int ne,no,to,va,c;
}e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w,int c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
bool spfa()
{
queue<int>q;
for(int i=s;i<=t;i++)
dis[i]=inf;
dis[s]=0;
v[s]=0;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
v[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].c)
{
dis[e[i].to]=dis[u]+e[i].c;
fr[e[i].to]=i;
if(!v[e[i].to])
{
v[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[t]!=inf;
}
void mcf()
{
int x=inf;
for(int i=fr[t];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[t];i;i=fr[e[i].no])
{
e[i].va-=x;
e[i^1].va+=x;
ans+=e[i].c*x;
}
}
int main()
{
n=read(),m=read(),k=read();
s=1,t=n;
for(int i=1;i<=m;i++)
{
int x=read(),y=read(),z=read();c[i]=read();
ins(x,y,z,0);
}
printf("%d ",dinic());
s=0,t=n;
int now=cnt;
for(int i=2;i<=now;i+=2)
ins(e[i].no,e[i].to,inf,c[i>>1]);
ins(s,1,k,0);
while(spfa())
mcf();
printf("%d\n",ans);
return 0;
}