spoj 1693 COCONUTS - Coconuts【最小割】

s向所有信仰1的人连(s,i,1),所有信仰0的人连(i,t,1),对于朋友关系,连接双向边,流量为1。跑最大流的结果即为答案。
考虑这样做的意义。最小割就是把总点集分割为两个点集S,T,使得所有\(u\in S,v\in T,val(u,v) \)的值最小。也就是说,在这道题中的意义就是使最少的边两端相异(s代表选1,t代表选0,所以违背自己就是割掉与s或者t的边)。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=505,M=200005,inf=1e9;
int n,m,s,t,le[N],h[N],cnt;
struct qwe
{
	int ne,to,v;
}e[M];
int read()
{
	int r=0,f=1;
	char p=getchar();
	while(p>'9'||p<'0')
	{
		if(p=='-')
			f=-1;
		p=getchar();
	}
	while(p>='0'&&p<='9')
	{
		r=r*10+p-48;
		p=getchar();
	}
	return r*f;
}
void add(int u,int v,int w)
{
	cnt++;
	e[cnt].ne=h[u];
	e[cnt].to=v;
	e[cnt].v=w;
	h[u]=cnt;
}
void ins(int u,int v,int w)
{//cout<<u<<" "<<v<<endl;
	add(u,v,w);
	add(v,u,0);
}
bool bfs()
{
	memset(le,0,sizeof(le));
	queue<int>q;
	le[s]=1;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		for(int i=h[u];i;i=e[i].ne)
			if(!le[e[i].to]&&e[i].v>0)
			{
				le[e[i].to]=le[u]+1;
				q.push(e[i].to);
			}
	}
	return le[t];
}
int dfs(int u,int f)
{
	if(u==t||!f)
		return f;
	int us=0;
	for(int i=h[u];i&&us<f;i=e[i].ne)
		if(le[e[i].to]==le[u]+1&&e[i].v>0)
		{
			int t=dfs(e[i].to,min(e[i].v,f-us));
			e[i].v-=t;
			e[i^1].v+=t;
			us+=t;
		}
	return us;
}
int dinic()
{
	int re=0;
	while(bfs())
		re+=dfs(s,inf);
	return re;
}
int main()
{
	while(1)
	{
		memset(h,0,sizeof(h));
		cnt=1;
		n=read(),m=read();
		if(!n)
			break;
		s=0,t=n+1;
		for(int i=1;i<=n;i++)
		{
			int x=read();
			if(x)
				ins(s,i,1);
			else
				ins(i,t,1);
		}
		for(int i=1;i<=m;i++)
		{
			int x=read(),y=read();
			add(x,y,1);
			add(y,x,1);
		}
		printf("%d\n",dinic());
	}
	return 0;
}
posted @ 2018-02-02 09:18  lokiii  阅读(164)  评论(0编辑  收藏  举报