51nod 1238 最小公倍数之和 V3 【欧拉函数+杜教筛】

首先题目中给出的代码打错了,少了个等于号,应该是

G=0;
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
{
    G = (G + lcm(i,j)) % 1000000007;
}

然后就是大力推公式:

\[\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i,j) \]

\[=\sum_{i=1}^{n}\sum_{j=1}^{n}\frac{ij}{gcd(i,j)} \]

\[=\sum_{d=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]\frac{ij}{d} \]

\[=\sum_{d=1}^{n}\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{d} \right \rfloor}[gcd(i,j)==d]ijd \]

然后需要一个打表找规律,发现\( \sum_{i=1}{n}\sum_{j=1}[gcd(i,j)1]ij=\sum_{i=1}^{n}i\frac{i\phi(i)+[i1]}{2} \)

\[=\sum_{d=1}^{n}d((2)\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}i\frac{i\phi(i)+[i==1]}{2})-1) \]

\[=\sum_{d=1}^{n}d((\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}i^2\phi(i)+[i==1])-1) \]

\[=\sum_{d=1}^{n}d\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}i^2\phi(i) \]

然后就可以递归使用杜教筛了,关于用杜教筛求\( \sum_{i=1}{n}i2\phi(i) \)的前缀和,有如下推导:

\[g(n)=\sum_{i=1}^{n}i^2\sum_{d=1}^{i}[d|i]\phi(d)=\sum_{i=1}^{n}i^3=\frac{n^2(n+1)^2}{4} \]

\[s(n)=\sum_{i=1}^{n}i^2\phi(i) $$那么把g展开: \]

g(n)=\sum_{i=2}{n}i2\sum_{d=1}^{i-1}[d|i]\phi(d)+s(n)

\[\]

s(n)=g(n)-\sum_{i=2}{n}i2\sum_{d=1}^{i-1}[d|i]\phi(d)

\[\]

=g(n)-\sum_{k=2}{n}k2\sum_{d=1}^{\left \lfloor \frac{n}{k} \right \rfloor}d\phi(d)

\[\]

=g(n)-\sum_{k=2}{n}k2*s(\left \lfloor \frac{n}{k} \right \rfloor)

\[\]

=\frac{n2(n+1)2}{4}-\sum_{k=2}{n}k2*s(\left \lfloor \frac{n}{k} \right \rfloor)

\[这就是标准的杜教筛递归子问题形式了,直接求解即可。 ```cpp #include<iostream> #include<cstdio> using namespace std; const long long N=1000005,m=1000000,inv2=500000004,inv4=250000002,inv6=166666668,mod=1e9+7; long long n,phi[N],q[N],tot,ans,ha[N]; bool v[N]; long long wk1(long long x) { if(x>=mod) x-=mod; return x%mod*(x+1)%mod*inv2%mod; } long long wk2(long long x) { if(x>=mod) x-=mod; return x%mod*(x+1)%mod*(x%mod*2+1)%mod*inv6%mod; } long long wk3(long long x) { if(x>=mod) x-=mod; return x%mod*x%mod*(x+1)%mod*(x+1)%mod*inv4%mod; } long long slv(long long x) { if(x<=m) return phi[x]; if(ha[n/x]) return ha[n/x]; long long re=wk3(x); for(long long i=2,la;i<=x;i=la+1) { la=x/(x/i); re=(re-(wk2(la)-wk2(i-1))%mod*slv(x/i)%mod)%mod; } return ha[n/x]=re; } int main() { phi[1]=1; for(int i=2;i<=m;i++) { if(!v[i]) { q[++tot]=i; phi[i]=i-1; } for(int j=1;j<=tot&&i%mod*q[j]<=m;j++) { int k=i%mod*q[j]; v[k]=1; if(i%q[j]==0) { phi[k]=phi[i]%mod*q[j]; break; } phi[k]=phi[i]%mod*(q[j]-1); } } for(int i=1;i<=m;i++) phi[i]=(phi[i]%mod*i%mod*i%mod+phi[i-1])%mod; scanf("%lld",&n); for(long long i=1,la;i<=n;i=la+1) { la=n/(n/i); ans=(ans+(wk1(la)-wk1(i-1))%mod*slv(n/i)%mod)%mod; } printf("%lld\n",(ans%mod+mod)%mod); return 0; } ```\]

posted @ 2018-01-23 10:51  lokiii  阅读(761)  评论(0编辑  收藏  举报