DMOJ IOI '17 P3 - Toy Train【拓扑排序】

传送:https://dmoj.ca/problem/ioi17p3
参考:https://blog.csdn.net/qq_27327327/article/details/80711824
妙啊……首先题意就是走到一个包含充电点的环里就能赢
因为出度至少是1,所以如果所有点都能到充电点那么全部是先手必胜;否则,不能到充点电的点以及一定能到这些点的点就一定是先手必败(能到的不是先手必胜,因为可能到了之后再出去进入别的环)
能到充点电的点是A支配并且能到至少一个充点电的点或B支配只能到充电点的点,每次求出这个集合,判断如果是全集就退出,否则用补集找到先手必败点删去,然后再对剩下不确定的点做上述操作即可

#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
const int N=5005;
int n,m;
vector<int>e[N],e2[N];
vector<int>wk(int fl,vector<int>a,vector<int>r,vector<int>b)
{
	vector<int>ans(n),d(n);
	queue<int>q;
	for(int i=0;i<n;i++)
		if(r[i]&&b[i])
			q.push(i),ans[i]=1;
	for(int i=0;i<n;i++)
		for(int j=0;j<e[i].size();j++)
			if(b[e[i][j]])
			{
				if(a[i]^fl)
					d[i]++;
				else
					d[i]=1;
			}
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		for(int i=0;i<e2[u].size();i++)
			if(!ans[e2[u][i]]&&b[e2[u][i]])
				if(!(--d[e2[u][i]]))
				{
					ans[e2[u][i]]=1;
					q.push(e2[u][i]);
				}
	}
	return ans;
}
vector<int> who_wins(vector<int>a,vector<int>r,vector<int>u,vector<int>v)
{
	n=a.size(),m=u.size();
	for(int i=0;i<m;i++)
		e[u[i]].push_back(v[i]),e2[v[i]].push_back(u[i]);
	vector<int>ans(n);
	for(int i=0;i<n;i++)
		ans[i]=1;
	while(1)
	{
		int fl=1;
		vector<int>b1=wk(1,a,r,ans);
		for(int i=0;i<n;i++)
			if(ans[i]&&!b1[i])
				fl=0;
		if(fl)
			return ans;
		for(int i=0;i<n;i++)
			b1[i]^=1;
		vector<int>b2=wk(0,a,b1,ans);
		for(int i=0;i<n;i++)
			if(b2[i])
				ans[i]=0;
	}
	return ans;
}
posted @ 2019-05-03 12:09  lokiii  阅读(231)  评论(0编辑  收藏  举报